MMSelfSup
Release 0.9.0

MMSelfSup Authors

May 01, 2022

10

11

12

13

14

15

16

17

18

19

PR

HEmhBRE

FRE0: 2E IR

FRE 1 M Bk X
PR 2: A SUERAEIE
R 3 B
PR 4 Ao LIRS
L S: HEXBRLEIT S
BRE6: AT AEAEEI
BYOL

DeepCluster

DenseCL

MoCo v1/v2

NPID

0oDC

Relative Location

Rotation Prediction
SimCLR

SimSiam

FIRIREIE—S

15
27
31
33
39
45
51
57
61
65
69
73
77
81
85
89

93

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

SwAV

MoCo v3

MAE

SimMIM
BarlowTwins

CAE

% 551k OpenMMLab
SR HE

English

A
mmselfsup.apis
mmselfsup.core
mmselfsup.datasets
mmselfsup.models
mmselfsup.utils

Indices and tables

Python Module Index

Index

97

101

103

105

107

109

111

113

121

123

125

127

135

145

147

151

153

155

MMSelfSup, Release 0.9.0

HSCSCRERF eI R, WO IR, AT G A I KB 112 S BRI ok

FHEIREE—E 1

MMSelfSup, Release 0.9.0

2 FHEIREE—E

CHAPTER

ONE

1.1

REHE

34k

Linux (Windows is not officially supported)
Python 3.6+

PyTorch 1.5+

CUDA 9.2+

GCC 5+

mmcv 1.4.2+

mmcls 0.21.0+

mmdet 2.16.0+

mmseg 0.20.2+

FEERT 5 MMSelfSup & i i) MMCV, MMClassification, MMDetection £ MMSegmentation R AR5 . hy ik
G IR I PR, 155 BT R E e AR

HX:

WERBC 24238 T mmev, 7T 29217 pip uninstall mmev RIEIFEC LN mmev, QERETEA
HiL] B2 25 7 mmev Al mmev-full, ModuleNotFoundError &l .

H T MMSelfSup M MMClassification 5| A T #543W 2% 31, FrAGHES F MMSelfSup Hij 4701 %% MM-
Classification .

AR EON T 2 MMDetection 1 MMSegmentation FJEHEPEI, W23 BEATAZ LA o

https://github.com/open-mmlab/mmcv
https://mmclassification.readthedocs.io/en/latest/install.html
https://mmdetection.readthedocs.io/en/latest/get_started.html#installation
https://mmsegmentation.readthedocs.io/en/latest/get_started.html#installation

MMSelfSup, Release 0.9.0

1.2

1.

2.

1.3

2.

BB IR

TR B AT fir %4 —> conda FYFEIIEREE, HTHE

conda create -n openmmlab python=3.7 -y

conda activate openmmlab

WS 1)7 #URE %% torch Hl torchvision, il 414 m] PAREFH PA R iy 4

conda install pytorch torchvision -c pytorch

TR A PyTorch JitA< 1 CUDA JARPERT, HARG W PAZ:2% PyTorch 14,

Feln, 7 /usr/local/cuda %% T CUDA 10.1, [n]Hf A8 %% PyTorch 1.7, 3R] DABEF AR fiy
A4z B i CUDA 10.1 1) PyTorch i 4161 .

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.1 -c pytorch

QAR PR MR Sk PyTorch £, AN EEFEMIA R, A LTE CUDA A FIIAE LR, b
419.0,

Zi# MMSelfSup

. 423 MMCV il MMClassification

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/

< {torch_version}/index.html

¥ LmdERE T {cu_version} Ml {torch_version} B#h AR RA ., o, 222
mmev—-full, [EFHER? CUDA 11.0 fl PyTorch 1.7.x, AIPAHE AT fird:

pip install mmcv-full —-f https://download.openmmlab.com/mmcv/dist/cull0/torchl.7/

—index.html

* PyTorch 7F 1.x.0 fil 1.x.1 Z [Alil 5 320, it mmev-full HFEHE 1.x.0 (4840 . 15431 PyTorch
JRAZE 1x.1, A PABCOHLZEREAE 1.X.0 U4 g1 mmev-full.

AT RAM i HL A& R[] PyTorch Fi1 CUDA A MMCV JiiA
Fribz o, T DOEBEM RS PE MMCV , BARTE S5 MMCV ‘4258 0,
3R] DA FH DA R fiy 2223 MMClassification :

pip install mmcls

T MMSelfSup F H 2%

Chapter 1. St

https://pytorch.org/
https://pytorch.org/
https://github.com/open-mmlab/mmcv#installation
https://github.com/open-mmlab/mmcv#installation

MMSelfSup, Release 0.9.0

git clone https://github.com/open-mmlab/mmselfsup.git
cd mmselfsup

pip install -v -e

o UIEIRE —e B develop %k, MMSelfSup Rk & LB, AT el gk < sr BIA L, TICHE
ERRe P
3. 4¢3 MMSegmentation £ MMDetection

TR DAE) DA R Ay A48 3 MMSegmentation 41 MMDetection:

pip install mmsegmentation mmdet

I 7 {3] pip 4¢3 MMSegmentation #{l MMDetection, %35, 7] DA{#] mim, 4 41:

pip install openmim
mim install mmdet

mim install mmsegmentation

1.4 NEFIELERE

T AR T conda B3 3 45 MMSelfSup 1 FTA 4.

conda create —n openmmlab python=3.7 -y

conda activate openmmlab

conda install -c pytorch pytorch torchvision -y

install the latest mmcv
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cul0l/torchl.7.0/

—index.html

install mmdetection mmsegmentation

pip install mmsegmentation mmdet

git clone https://github.com/open-mmlab/mmselfsup.git
cd mmselfsup

pip install -v -e

14. WNBFFATEIA 5

https://github.com/open-mmlab/mim

MMSelfSup, Release 0.9.0

1.5 B—Fh%k$E: {§H Docker

FA TR T — L ELAF P A FREER) Dockerfile,

build an image with PyTorch 1.6.0, CUDA 10.1, CUDNN 7.
docker build -f ./docker/Dockerfile —-rm -t mmselfsup:torchl.10.0-cudall.3-cudnn8

P AR A3 20E T nvidia-container-toolkit

BT N2

docker run --gpus all --shm-size=8g —-it -v {DATA_DIR}:/workspace/mmselfsup/data.
—mmselfsup:torchl.10.0-cudall.3-cudnn8 /bin/bash

{DATA_DIR} &R R T A IR H 5% .

1.6 RERE

ESE RMMAEER, o TR EIE G 25 T MMSelfSup DA HLAS R ORI, 35 T T B AR R 5 iU B -

import torch

from mmselfsup.models import build_algorithm

model_config = dict (

type='Classification’,

backbone=dict (
type="'ResNet',
depth=50,
in_channels=3,
num_stages=4,
strides=(1, 2, 2, 2),
dilations=(1, 1, 1, 1),
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict (type='BN"),
frozen_stages=-1),

head=dict (
type="'ClsHead', with_avg_pool=True, in_channels=2048,

num_classes=1000))

model = build_algorithm(model_config) .cuda ()

image = torch.randn((1, 3, 224, 224)).cuda()
label = torch.tensor([1]) .cuda()

(continues on next page)

6 Chapter 1. = EHE

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker

MMSelfSup, Release 0.9.0

(continued from previous page)

loss = model.forward_train(image, label)

R ERENTRZAT LA, JRE S M e B T A B85

1.7 EFRAABERAE MMSelfSup

WERAE A LR T 22 A () MMSelf Sup, FATHERERN X 24N BUAS B A [+ 1A RE AL A5 o

TN A A BRI DA AL, @A PV RS Bt (train. py, test.py SUUHMATMIFRF A
F1 AR

import os.path as osp
import sys

sys.path.insert (0, osp.join(osp.dirname (osp.abspath(file)), '../"))

SUFEA [RA) MMSelfSup (1 H g iz fT A R i :

export PYTHONPATH="$ (pwd)":SPYTHONPATH

1.7. {EAFRRREZAR MMSelfSup 7

MMSelfSup, Release 0.9.0

8 Chapter 1. = EHE

CHAPTER

TWO

Eiii$i=

o FEAfiFRE
- YIGEAMEX
* i CPU Il %k
* K/ 2 K R
* 2 BPLEIgR
* -Gl RS2 ML

— BEHED

- THRMHEK
* ST SR
* AR

*)1 -SNE Az n ik
* [P

ARSCRHR AL MMSelfSup A1 VAR FERHHRE . QSR EO0H Un] 222 MMSelf Sup DA K HAT S A BE), 152
% F AL

2.1 JIGEFNEE

R UEE—MESHEE, BOASEH 8 LB R, WRERMEH TR Z 4 8 sl R, L A/RH) batch
size W[UGG, TR RR A 27 2T SRR — A Ze a0 0, 82 S AT DA DATR 28 ZOR PR B Ry 27) 3%
new_lr = old_lr * new_ngpus / old_ngpus. G224, FAIHEELEH tools/dist_train.sh
KPS, RMEGEMH—HE R, F2h MMSelfSup Hif S5k SRR 1=l 25

MMSelfSup, Release 0.9.0

2.1.1 {EH CPU i)k

export CUDA_VISIBLE_DEVICES=-1

python tools/train.py CONFIG_FILE

TR HATAHES N P CPU #EA7YI4E, B CPU Mgl BEAR TS, —SeByh A SR I 2%, Blan
SyncBN, Ik WA IATIGE, BATHRX TR 707 I FAEdcA GPU HIHLAS BT

2.1.2 fE &K/ S5RE R %k

sh tools/dist_train.sh CONFIG_FILE GPUS } ——work-dir YOUR_WORK_DIR [optional.

—arguments]

e ——resume-from ${CHECKPOINT_FILE}: MJ:A> checkpoint Zb4kLEi)I| %

* ——deterministic: J/§ “deterministic” i, BATTE MR INGEELFEAT, (Hie S RUESPR TR
e

54n:

checkpoints and logs saved in WORK_DIR=work_dirs/selfsup/odc/odc_resnet50_8xb64—
—steplr-440e_inlk/

sh tools/dist_train.sh configs/selfsup/odc/odc_resnet50_8xb64-steplr-440e_inlk.py 8 —-—
—work_dir work_dirs/selfsup/odc/odc_resnet50_8xb64-steplr-440e_inlk/

3% 72 R, checkpoints FT logs #ARAEAE [— H R ESF.
WeAh, QR GEAE— A slurm B BERY SR PIZE, 0T AGETT AR I BAS T JR)11 24

GPUS_PER_NODE=5{GPUS_PER_NODE GPUS=5{GPUS SRUN_ARGS= SRUN_ARGS sh tools/slurm_
—train.sh PARTITION JOB_NAME CONFIG_FILE YOUR_WORK_DIR [optional.
—arguments]

Bian:

GPUS_PER_NODE=8 GPUS=8 sh tools/slurm_train.sh Dummy Test_job configs/selfsup/odc/odc_
—resnet50_8xb64-steplr-440e_inlk.py work_dirs/selfsup/odc/odc_resnet50_8xb64-steplr-
—440e_inlk/

10 Chapter 2. Eiilighie

https://slurm.schedmd.com/

MMSelfSup, Release 0.9.0

21.3 fERSaHRI%

AR AR ethernet EREE R Z G0, AT A A N ad-
EH—EPLA L

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.

—sh S$SCONFIG $GPUS

e —Ghlas b

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=S$MASTER_ADDR sh tools/dist_train.

—sh $SCONFIG S$GPUS

EZ, ARG o B P B B T LA LR 13, IZRIF AR .

TR S slurm SRASHFEZ Sl , G8n] DA RIZE B S ALES L —FE R BT 55, (H2 Eusiifs
WEAENHEA RS, BRRPAZ% slurm_train.sh,

214 E—BINS LBHIEMES

WEREATE— Bl LREh 2 MESs, inil, R34 RRMESTE—& 8 RALE L, BHRENEA
AT 95 6 AN 3 151 SR BT 13 1 vh 5

MEEEH dist_train. sh KBEsHINGAES5S:

CUDA_VISIBLE DEVICES=0,1,2,3 PORT=29500 sh tools/dist_train.sh CONFIG_FILE} 4 —-
—work-dir tmp_work_dir_1
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 sh tools/dist_train.sh CONFIG_FILE 4 ——

—work-dir tmp_work_dir_2

WA slurm SRJFSNGATSS, ARA BRI 2O R M55 3 AN [i 11 -
Ik L
1 configl.py H, A &G

dist_params = dict (backend="nccl', port=29500)

1E config2.py H, N~ &k:

dist_params = dict (backend="nccl', port=29501)

SR 5 T DA configlpy Al confie2.py I EIHIAR IR K145

21. J%GERMEE 1

MMSelfSup, Release 0.9.0

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 sh tools/slurm_train.sh PARTITION JOB_NAME }.,
—configl.py tmp_work_dir_1
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 sh tools/slurm_train.sh PARTITION JOB_NAME }._.

—config2.py tmp_work_dir_2

Tk 2:
B T IE O E S 2 A, BT A . cfg—opt ions SREEERINM kG H 5

CUDA_VISIBLE _DEVICES=0,1,2,3 GPUS=4 sh tools/slurm_train.sh PARTITION JOB_NAME }..
—configl.py tmp_work_dir_1 —--cfg-options dist_params.port=29500
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 sh tools/slurm_train.sh PARTITION JOB_NAME }.,

—config2.py tmp_work_dir_2 --cfg-options dist_params.port=29501

2.2 BAENR

FAT I B2 P iy R PG ERAY PO GRS, BRI AT AS 2% Benchmarks .

2.3 TEFEN

2.3.1 GIHERISH

python tools/analysis_tools/count_parameters.py CONFIG_FILE

23.2 A HhiER

MAREAT—AMRBLZ 1, GRT REARMIDA T L1
o R 24 R CPU tensor.
* MM optimizer [FRR S S %L
* T8 checkpoint UM AAE, FHFHIRNE] checkpoint [y SC:44 .
R PARE DA g e b LPF g

python tools/model_converters/publish_model.py INPUT_FILENAME OUTPUT_FILENAME

12 Chapter 2. Eiilighie

MMSelfSup, Release 0.9.0

2.3.3 f#fH t-SNE EMER Tt

FATEROE T — D ITFHG I AR) TR 7 34

python tools/analysis_tools/visualize_tsne.py CONFIG_FILE} —-checkpoint CKPT_PATH
— ——work-dir WORK_DIR} [optional arguments]
2

* CONFIG_FILE: YIIZFill Sk By i S50 i SC .
o CKPT_PATH: Wiyl 2tz iy 14 4%.
* WORK_DIR: A7 A HALEE A B4,

e [optional arguments]: AJ[iEZS%, E LT PAS% visualize_tsne.py

2.34 oJENH

R AR ARSI R v B E, BRI PAEE ——deterministic %K. (Hi2, H§ ——deterministic
BEIRE %M torch.backends. cudnn.benchmark, i DA ik ()1 2k 5 2018

23. TRMEWY 13

MMSelfSup, Release 0.9.0

14 Chapter 2. Eili#ii=

CHAPTER

THREE

0 FIEE

MMSelfSup =% 1] python SCUFAE AL EL . AT RIBCE SCIF RGN 7RI QlR M, 5 (8) 52
AP BT BRCE SO configs SCHFIE. A RARAEAR B2 B DLRC B SO, AR T PASIAT python

tools/misc/print_config.py & 5L E .
© HAR0: 2 RE

- MBS A i 4 2008
* HER
* BRE R
* YN ME R
* BdnfE B
* BCE S 44 7 Bl
* A AL 2 E

- WCE SRS

— YRR O S
G T 1 v A
* 2N BL R P B
AR O P B

- B ARSI S

- A E SRR

15

MMSelfSup, Release 0.9.0

31 BRENHSHRERGRNE

FATREOE T 124 7 R iy 44 WL ELSCPFH EENTTIR A g 0% fiv 44 AWK o TS SCIR 44 T8 i 4 B3 SRME R
BEHE R UIZRE ARG E . 23 E, AR T RIZaEsE ', [\ b s e s -
JEEE

{algorithm}_{module}_{training_info}_{data_info}.py

e algorithm info: WHEHELFHEILEEE, HIUsimclr, mocov2 4%;

e module info: BiHMEHE., H¥HFER—L backbone, neck Fll head {5 & ;

* training info: YIZER, BI—LEIZERE, EIEMAD, EI KPR, By
* data info: HR(EE: BUREST, MAIUNE, BIHN imagenet, cifar 45,

3.1.1 BiEER

{algorithm}-{misc}

Algorithm FREHFEILGIGHIRA . Blan:
* relative-loc: N[B0 BT 4 s -
e simclr
* mocov2
misc fEft—L A R AEE . Flan:
e npid-ensure-neg

* deepcluster-sobel

3.1.2 #EIRMER

{backbone setting}-{neck setting}-{head_setting}

B fE L 3 B4 backboe {75 K. I
* resnet50
« vit (£ A mocov3 H)
A — LU R AR O B4 7 PR AR R R B Bl -

e resnet50-nofrz: FE—ETRHHEESHIIZF, % backbone A4 stages

16 Chapter 3. #32 0: Z3JiE

MMSelfSup, Release 0.9.0

3.1.3 JI%ER

IZAH X B E:, fUFE batch size, Ir schedule, data augment 55,

 Batchsize, ¥\ 2 {gpu x batch_per_gpu} , il 8xb32;

e Training recipe, Z N VEPAII R P 4H4E: {pipeline aug}—{train aug}-{loss

B

{scheduler}—-{epochs}

trick}-

* 8xb32-mcrop-2-6-coslr-200e: mcrop & SWAV & H i) pipeline H 1% 44 >~ multi-crop f{—4. 2

16 /R 2 /> pipeline 73 5t 2 N1 6 ASFEST AL, i BLAEHT(SIC AR fE R

e 8xb32-accumlé-coslr-200e: accuml6 FRNESAEFEZEH 16 MERZEEH .

3.1.4 HIRER

B s S S BE, MAK/NE. fin:

inlk: ImageNetlk IR, B FH & A KGR KNG 224x224
inlk-384px: Fnk A BEME K/ 384x384
cifarl0

inat18: iNaturalist2018 ¥({ssE, f7 8142 2

places205

3.1.5 EEXH&HERG

swav_resnet50_8xb32-mcrop-2-6-coslr-200e_inlk-224-96.py

swav: ByEER
resnet50: fEHYEHE

8xb32-mcrop-2-6-coslr-200e: Y|ZfEE

8xb32: HAH] 8 5k GPU, 43k GPU L[batch size ;& 32

mcrop-2-6: fii fij multi-crop #5752

coslr: (AR~ RS

200e: YILRIEEAL 200 4> 15

inlk-224-96: $#E{5E , 7F ImageNetlk £ FilZh, % AR/ 224x224 F1 96x96

3.1.

EEXHSEERGINE

17

MMSelfSup, Release 0.9.0

3.1.6 EERGHBATE

R R iy 44 FRASRRCE 245, H IS A

{config_name}_{date}-{hash}.pth

3.2 EEE N4

1E configs/_base_ SCIFH, H 4 PR8I ELRlZH RS/, BD
« models
« datasets
* schedules

e runtime
YR AT DA 12 4 A — S SR B SO R A R H C WL E . B _base_ NI ECEBIFR N R4S
e E (primitive) .
AT 5 THE, FAIEH MoCo v2 fER—AMEF, X BRIl IR, A THEZAT, HS%
API SCHY.

Bl B {4 configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_inlk.py I Ffrik.

base = [
'../_base_/models/mocov2.py’, # A
'../_base_/datasets/imagenet_mocov2.py', # HKE
'../_base_/schedules/sgd_coslr-200e_inlk.py', # J&EEE
'../_base_/default_runtime.py', # BATHIRE

X B, RAVSARIZITHIEE F B K max_keep_ckpts,

max_keep_ckpts HH| AN work_dirs Wi AMH ckpt XHFHEE

WEYE 3, Y CheckpointHook (# mmcv WH) REH 4 /N ckpt H,
CAEBBREREHAAN, EEW ckpt XHNERFFH 3

checkpoint_config = dict (interval=10, max_keep_ckpts=3)

Note: FLEILIFHY ‘type’ 2—1KH, MARSHH—H70T.

../_base_/models/mocov2.py 5& MoCo v2 Bt E: it AR 2 e

model = dict (
type='MoCo', # HE4F

(continues on next page)

18 Chapter 3. #32 0: Z3JiE

MMSelfSup, Release 0.9.0

(continued from previous page)

queue_len=65536, # F|HEFH AFEAEE
feat_dim=128, # ZHEBALMEWNEE, 5T neck W out_channels
momentum=0.999, # FEEFHLEWN T E LRI
backbone=dict (
type="'ResNet', # Backbone name
depth=50, # backbone ¥/, ResNet T P\#&$ 18. 34, 50, 101, 152
in_channels=3, # % \[E 1% i 24
out_indices=[4], # WHBFLEEWHEXE, 0 £ conv-1, x k7 stage-x
norm_cfg=dict (type='BN'")), # ME-NFHIFE norm B
neck=dict (
type="'MoCoV2Neck', # Neck name
in_channels=2048, # #r \if1 %
hid_channels=2048, # [4 2%
out_channels=128, # # 4 8%
with_avg_pool=True), # = &7 backbone Z JG{# 4 /&3
head=dict (
type='ContrastiveHead', # Head name, ;‘;%7% MoCo vZ2 @i}ﬂ contrastive loss
temperature=0.2)) # HHLOHTREREHRERSHK

../_base_/datasets/imagenet_mocov2.py & MoCo v2 [} ml e FE i & .

BEERE
data_source = 'ImageNet' # %‘kﬁ‘/}?%?
dataset_type = 'MultiViewDataset' # #4l1J& pipeline Hj#{E& KAl

img_norm_cfg = dict(
mean=1[0.485, 0.456, 0.406]1, # AXRMINLETINLE backboe HA HHE
std=[0.229, 0.224, 0.225]) # FRFINGFIN% backbone AL A7 £
mocov2 1 mocovl Z|AMNERET pipeline WH transforms
train_pipeline = [
dict (type='RandomResizedCrop', size=224, scale=(0.2, 1.)), # RandomResizedCrop
dict (
type='RandomAppliedTrans', # P\ 0.8 WHIRWAEH Colorditter ¥iE F ik
transforms=[
dict (
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.1)
1s
p=0.8),
dict (type='RandomGrayscale', p=0.2), # 0.2 HEZEH RandomGrayscale
dict (type='GaussianBlur', sigma_min=0.1, sigma_max=2.0, p=0.5), # 0.5 fEEHHEN_

—GaussianBlur

(continues on next page)

3.2. BEEXHEN 19

MMSelfSup, Release 0.9.0

(continued from previous page)

dict (type='RandomHorizontalFlip'), # MEHLA T E %

prefetch
prefetch = False # R &{ffl prefetch jui# pipeline
if not prefetch:
train_pipeline.extend(
[dict (type='ToTensor"'),

dict (type='Normalize', **img_norm_cfqg)])

BEELE
data = dict (
samples_per_gpu=32, # #i5 GPU Wik A/|, I 32%8=256
workers_per_gpu=4, # &% GPU 3k pre-fetch ¥IEHW worker NI
drop_last=True, # R&EFHF&E—/| batch Wik
train=dict (
type=dataset_type, # HEELF
data_source=dict (
type=data_source, # #HiEF LT
data_prefix='data/imagenet/train', # HEEHREFX, Y ann_rfile IHEH, KHfE
BB B R ZAR B % B 3 kB
ann_file='data/imagenet/meta/train.txt', # # ann_file T, KA EMNZH
RA
)y
num_views=[2], # pipeline WA [8 EN%
pipelines=[train_pipeline], # ill% pipeline
prefetch=prefetch, # i/ {4
))

../_base_/schedules/sgd_coslr-200e_inlk.py & MoCo v2 i EMHEHl & .

kA
optimizer = dict(
type='scD', # U HEEXE
1r=0.03, # (hENFIE, SHNFHAERNFESM PyTorch XH4
weight_decay=le-4, # #HE5HK
momentum=0.9) # SGD BB EFE
R BELMEGTHEE, 5% https://github.com/open-mmlab/mmcv/blob/master/mmcv/
—runner/hooks/optimizer.py#L8 By SE A,
optimizer_config = dict() # XN EFINKE grad clip, coalesce, bucket_size_mb %,

3 Kk
FREM Lrupdater #F W ¥ I FHERE
lr_config = dict(

(continues on next page)

20 Chapter 3. #32 0: Z3JiE

MMSelfSup, Release 0.9.0

(continued from previous page)

policy='CosineAnnealing', # BEHKH, WX Step, Cyclic %. LrUpdater IIFHHTF
%% https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr _updater.py#L9,
min_lr=0.) # CosineAnnealing P Z /¥ XEE

BATHEE
runner = dict(

type='EpochBasedRunner', # #f# runner WA (flin IterBasedRunner .
—EpochBasedRunner)

max_epochs=200) # 4T TAEWJA# B4 Runner B max_epochs, % T IterBasedRunner ffJf._

< ‘max_iters’

../_base_/default_runtime.py seiafTH B ERA R E .

REFMRAE S
checkpoint_config = dict (interval=10) # HFAEZ 10

yvapf:disable
log_config = dict(
interval=50, # TH H X E[F
hooks=[
dict (type='TextLoggerHook'), # W% # Tensorboard logger
dict (type='TensorboardLoggerHook'),
1)
yapf:enable

BATHRE

dist_params = dict (backend='nccl') # HESAANEHSH, %O LHFRE.

log_level = '"INFO' # HEWHE level.

load_from = None # i ckpt

resume_from = None # N4 EMERKEREL, ¥olled SRFHBAHKEINEL.

workflow = [('train', 1)] # Workflow for runner. [('train', 1)] %71?%]’#/]\ workflow, Z
wworkflow % F & 'train' HIPFAT—W.

persistent_workers = True # Dataloader Wi%#® persistent_workers A /F{H, HHEBFESH
—PyTorch X%

3.2. BEEXHEN 21

MMSelfSup, Release 0.9.0

3.3 YA SE & 4

N ST HME, FNHER TTRRE B TRk

PP — AR N BT A IS, AT R A R (primitive) Te'E . HABFTATCE N M R
(primitive) FLEAK, EHHRKIAEZIRH 3.

B 40, R AR B BCE SO 2 BT MoCo v2 il — 2B, HIER AT L@ S 45 E base ='./
mocov2_resnet50_8xb32-coslr-200e_inlk.py.py' (FINFTFARMHEDE SCAmBE4R) QR E AT
MoCo v2 Z5#y, ZHRdE MM GRS, BEETERE X Bk — S B S8 e, R —PHER
WEBT, BeA1A8{#] configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_inlk.
py .py HULFFTARIECE, (H2R 25 AN 200 1225k 800, & 02 > Z2 a2 i I AL AR S B A, AT
PABNEE—1~44 8 configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-800e_inlk.py.py
RTBCE SO, NAST

base = './mocov2_resnet50_8xb32-coslr-200e_inlk.py"

runner = dict (max_epochs=800)

3.3.1 EREEPHhEEE

FEC L SO] — L8 v [A 2 (e B SO S B A 5 T8 e

BN ByEd g aAsEA data_source, dataset_type, train_pipeline, prefetch. 14 E X
BN ENMESH data.

data_source = 'ImageNet'
dataset_type = "MultiViewDataset'
img_norm_cfg = dict (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

train_pipeline = [...]

prefetch
prefetch = False # 2 &{f/fl prefetch & pipeline
if not prefetch:
train_pipeline.extend(
[dict (type='ToTensor'),

dict (type='Normalize', **img_norm_cfqg)])

dataset summary

data = dict (
samples_per_gpu=32,
workers_per_gpu=4,
drop_last=True,

train=dict (type=dataset_type, type=data_source, data_prefix=...),

(continues on next page)

22 Chapter 3. ##2 0: 3 E

MMSelfSup, Release 0.9.0

(continued from previous page)

num_views=[2],
pipelines=[train_pipeline],

prefetch=prefetch,

3.3.2 PRREMEEPHFER

HHHE, RFFERE _delete_=True JZMEHEAELE SO H— IR N ZE . KA PAS % mmev AT L3t
.

P2 R R — T WRARAT B HE simelr 13 HH] MoCovaNeck, (UANARARH HHEAE MU 2 4it get un-
excepected keyword 'num_layers' {i%, [FNYE model .neck fufE B, EMECE 'num_layers'
FEHRTF TR T, WHRERM _delete_=True }ZME model . neck FEELRELE U ITHE X F BN

base = 'simclr_resnet50_8xb32-coslr-200e_inlk.py'

model = dict (
neck=dict (
delete=True,
type="'MoCoV2Neck',
in_channels=2048,
hid_channels=2048,
out_channels=128,

with_avg_pool=True))

3.3.3 EREMEEPHFER

A, RATRES I _base_ FUE LB, PABRESE o ARAI AZFE mmey FRIEZ 1A .

R TR AE U 25 50 AL TR pipeline 18] auto augment f9— 01 T, %% configs/selfsup/ode/
odc_resnet50_8xb64-steplr-440e_inlk.py. 4 EX num_classes I, HEFZH auto augment [1)

BN ZIAT] _base_, A {{_base_.num_classes}} K5| X seAs & :

base = [
'../_base_/models/odc.py"',
'../_base_/datasets/imagenet_odc.py"',
'../_base_/schedules/sgd_steplr-200e_inlk.py"',
'../_base_/default_runtime.py',

model settings

(continues on next page)

3.3. RIS ECE M+ 23

https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/config.html#inherit-from-base-config-with-ignored-fields
https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/config.html#reference-variables-from-base

MMSelfSup, Release 0.9.0

(continued from previous page)

model = dict (

head=dict (num_classes={{_base_.num_classes}}),

memory_bank=dict (num_classes={{_base_.num_classes}}),

optimizer

optimizer = dict(

type='SGD',
1r=0.06,
momentum=0.9,
weight_decay=le-5,

paramwise_options={'\\Ahead.': dict (momentum=0.)})

learning policy

1lr_

config = dict (policy='"step', step=[400], gamma=0.4)

runtime settings

runner = dict (type='EpochBasedRunner', max_epochs=440)

max_keep_ckpts BH|EMNHE work dirs WIRHEM ckpt HMEAEE
WEVET 3, CheckpointHook (£ mmcv W) HRHEE 4 /)~ ckpt H,
CaBREREHAN, FEE ckpt XHENFERFA 3

checkpoint_config = dict (interval=10, max_keep_ckpts=3)

3.4 BEMASHIEYEE

34 J P I “tools/train.py” 2, “tools/test.py” AL , B LA T LN, ITLAE M E ——cfg-opt ions
SRR P SO B S

o S ST C) T P R

A 3 AT DA S A0 D G T T B R BT s € . B, ——cfg-options model.backbone.
norm_eval=False {Z:#i% backbones F /1A BN ikl t rain iz,

o THHTH R AP o
PR TC B P — LU B O i A R AR B, IR pipeline data.train.pipeline ¥ @& —
A FE, il [dict (type='LoadImageFromFile'), dict (type='TopDownRandomFlip',
flip_prob=0.5), ...1. WRARIEFLE pipeline 6 ' flip_prob=0.5"' &K 'flip_prob=0.
0', RAPAFEE ——cfg-options data.train.pipeline.l.flip_prob=0.0

o T list/tuples HAY{H
AR R — N RBCE T, BN BeE SCHHE R I E workflow=[("train', 1)]. 1
AR TS AN, R PATEE ——cfg—options workflow="[(train, 1), (val,1)]". HE:
XFT list/tuple iR AY, 5157 200, H HAEHEEREHE, 1E515 % NO = HFAT.

24

Chapter 3. #i2 0: %> E

MMSelfSup, Release 0.9.0

3.5 EANHPELER

Note: JXF4rINZAHI2=4E AT AL, HAEREH Hlh MM-codebase i 2 %], Bilanf il mmels 15K 55 =5 ik
R LA

PRA] B T HoAB) MM-codebase k58 AR TS, FAE TREHQIEH AR RS, BAUSE, Bulgmass,
R T fEACAED, ARE] DARE] MM-codebase 1E R 25 =7 fiE, HFRZLRAFRH CAHMINRRD, FHAER &SR
A HE X, R0 A2 OpenMMLab Algorithm Competition Project H1 {1

FEAR B 2 B BCE P s i an s Brd i AL -

custom_imports = dict (
imports=['your_dataset_class',
'your_transforme_class',
'your_model_class',
'your_module_class'],

allow_failed_imports=False)

35. SARPTE LB 25

https://github.com/zhangrui-wolf/openmmlab-competition-2021

MMSelfSup, Release 0.9.0

26

Chapter 3. #12 0: #3iE

CHAPTER

FOUR

A 1: BRINF R IEE X

TEATTHRR T, BATPHNH LI H & SCEHRAE B AL IR
o BAE 1 BSIE B X
- B A% AR Bl
- f# DataSource 1%
- fJ# Dataset T2
- R E S

ARARE FIE AN TG LA E i B RcHiA% 3, AR AT PAGER] datasets 55 AP 28 BB Rt o (EU2 B0t 11X
LEPAT RS 2, AR ATR VR B SR R BT A Bt X

4.1 BE L EEHA =G

TR AR B K S AR SO 2

000001.9pg 0
000002.9pg 1

TG — R s, R Ese

e 7% DataSource: 4K HAZ BaseDataSource

BTN RE SRR

* T2 Dataset: #KHLH BaseDataset T R A TR AN T .

27

MMSelfSup, Release 0.9.0

4.2 63 DataSource F

BRI T I DataSource N 1244 N NewDataSource, YRA[PAFE mmselfsup/datasets/
data_sources HFE FAIE— M, 04 8 new_data_source.py , FAEXA A F 52 NewData—
Source Iz,

import mmcv

import numpy as np

from ..builder import DATASOURCES

from .base import BaseDataSource

@DATASOURCES . register_module ()

class NewDataSource (BaseDataSource) :

def load_annotations (self):

assert isinstance(self.ann_file, str)
data_infos = []
writing your code here.

return data_infos

RIG, fF mmselfsup/dataset/data_sources/__init_ .py H¥NIl NewDataSource,

from .base import BaseDataSource

from .new_data_source import NewDataSource

_all = [

'BaseDataSource', ..., 'NewDataSource'

4.3 ¢l Dataset F3

BRARELT A2 Dataset K 72445 NewDataset, YRAJPAYE mmselfsup/datasets Hig A
=3, XA new_dataset.py , HAEXAN S NewDataset B,

Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.utils import build_from_cfg

from torchvision.transforms import Compose

(continues on next page)

28 Chapter 4. #72 1: FINEFEYEIBHEX

MMSelfSup, Release 0.9.0

(continued from previous page)

from .base import BaseDataset
from .builder import DATASETS, PIPELINES, build_datasource

from .utils import to_numpy

@DATASETS.register_module ()

class NewDataset (BaseDataset) :

def _ init_ (self, data_source, num_views, pipelines, prefetch=False):
writing your code here

def _ _getitem__ (self, idx):
writing your code here

return dict (img=img)

def evaluate(self, results, logger=None) :

return NotImplemented

SR)G, fE mmselfsup/dataset/__init_ .py F¥fIl NewDataset.,

from .base import BaseDataset

from .new_dataset import NewDataset

_all = [

'BaseDataset', ..., 'NewDataset'

4.4 1eeqEcE 3

ATl NewDataset, ARATDAME ML E 41T :

train=dict (
type="'NewDataset',
data_source=dict (
type='NewDataSource',
)y
num_views=[2],
pipelines=[train_pipeline],

prefetch=prefetch,

44. EHEEXH 29

MMSelfSup, Release 0.9.0

30

Chapter 4. #3712 1: HMIFHEOEIEHERX

CHAPTER

FIVE

iz 2: BENHIEEE

o B2 HEHIREE
— Pipeline {15

- TE Pipeline W EIEGHT B EIHIG IR

5.1 Pipeline %

DataSource fll Pipeline J& Dataset WP NEZEHM . FAIC EHEadd_new_dataser /4T Data-
Source , Pipeline HBtREGQI T —RANMEIRNGE, FIAFEVLEIT; .

X2 T simCLR JIIZRH) Pipeline HRCE B

train_pipeline = [
dict (type='RandomResizedCrop', size=224),
dict (type='RandomHorizontalFlip'"),
dict (
type='RandomAppliedTrans’',
transforms=|
dict (
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
I
p=0.8),
dict (type='RandomGrayscale', p=0.2),

dict (type='GaussianBlur', sigma_min=0.1, sigma_max=2.0, p=0.5)

Pipeline HRAEMEIRARHAC—IKIFBANEA I HH—IKB5R 5 R 1L

31

MMSelfSup, Release 0.9.0

5.2 ff Pipeline PRIEFHBIEIEEE

1. 7& transforms.py F 45— B ARG IR KA, HERE __call mRAL, ZeREERI—TKk Pillow FIBRAE
NHIA

@PIPELINES.register_module ()

class MyTransform(object) :

def _ _call__(self, img):
apply transforms on img

return img

2 AEFE SRR E . BATE B LR BCE SR, FAEHAPE My Trans form,

train_pipeline = [
dict (type='RandomResizedCrop', size=224),
dict (type='RandomHorizontalFlip'"),
dict (type='MyTransform'),
dict (
type='RandomAppliedTrans’',
transforms=[
dict (
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
i
p=0.8),
dict (type='RandomGrayscale', p=0.2),

dict (type='GaussianBlur', sigma_min=0.1, sigma_max=2.0, p=0.5)

32 Chapter 5. ##2 2: HELHIEEE

CHAPTER

SIX

HiIE 3. RMFEIEIR

© O3 IRINFTOBIER
— VRINFTHY backbone
— VRIIHTIY Necks
R AVIENIUEES
- AT UE)
TE A W ST U, A AR AT AR5 AR IO 43
* backbone: JJTHEH I BAFHLE .
» projection head: 4 backbone B HFAE B2 5 — 23] .
o loss: FITHRBLLACI LR PR L.
* memory bank (W[i%): —Lk (B4 ode), FHEAHSMY memory bank T 1EA EIMZHFE .

6.1 ZFRINFHAY backbone

AR FRATEA B — H 2 1Y backbone CustomizedBackbone,

1. A7 ¥ 3 mmselfsup/models/backbones/customized_backbone.py FHAFH P LI Cus-

tomizedBackbone ,

import torch.nn as nn

from ..builder import BACKBONES

@BACKBONES .register_module ()

class CustomizedBackbone (nn.Module) :

def __init__ (self, **kwargs):

TODO

(continues on next page)

33

MMSelfSup, Release 0.9.0

(continued from previous page)

def forward(self, x):

TODO

def init_weights(self, pretrained=None) :

TODO

def train(self, mode=True) :

TODO

2. fFf mmselfsup/models/backbones/__init__ .py 5§ A HE XK backbone,

from .customized_backbone import CustomizedBackbone

_all = [

., 'CustomizedBackbone'

3 AR E SO R R E

model = dict (

backbone=dict (
type="'CustomizedBackbone',

)

6.2 #FhnEhEY Necks

FATHE mmsel fsup/models/necks L5 T FrA) projection heads. {Fi%FRATEAH— Customized-
ProjHead,

1. B 72— X mmselfsup/models/necks/customized_proj_head.py FHIEH P LI Ccus-

tomizedProjHead,

import torch.nn as nn

from mmcv.runner import BaseModule

(continues on next page)

34 Chapter 6. 2 3: FINFEYELR

MMSelfSup, Release 0.9.0

(continued from previous page)

from ..builder import NECKS

@NECKS.register_module ()

class CustomizedProjHead (BaseModule) :

def _ init_ (self, *args, **kwargs):
super (CustomizedProjHead, self).__init__ (init_cfqg)
TODO

def forward(self, x):
TODO

PRATESEBURT 1 B HC, AR SUA backbone JIRAEAE, I WU I AO4HE

2. fF mmselfsup/models/necks/__init__ 1 H A CustomizedProjHead,

from .customized_proj_head import CustomizedProjHead

CustomizedProjHead,

3 AR E SO R E E

model = dict (
.
neck=dict (
type="'CustomizedProjHead',
)

6.3 FRMFBIIRK

N T BUR R, AT EEAEB B forward BEL.

1. G — 30 Cff mmselfsup/models/heads/customized_head.py FHIEFHF LI H E X

CustomizedHead

import torch
import torch.nn as nn

from mmcv.runner import BaseModule

(continues on next page)

6.3. RMFRYMR K 35

MMSelfSup, Release 0.9.0

(continued from previous page)

from ..builder import HEADS

@QHEADS.register_module ()

class CustomizedHead (BaseModule) :

def _ _init__ (self, *args, **kwargs):
super (CustomizedHead, self).__init__ ()
TODO

def forward(self, *args, **kwargs):

TODO

2. 7F mmselfsup/models/heads/__init__.py HR AL,

from .customized_head import CustomizedHead

_all___ = [..., CustomizedHead, ...]

3 AR E SRR R E

model = dict (
-
head=dict (type='CustomizedHead")
)

6.4 EFMAXSN

FEAVE T _EidE ARG, BATHEZAH# 4 CustomizedAlgorithm RA ZIEMRHALNTLLE] &,
CustomizedAlgorithm HULEIRIEBAMA , FHRHIRE H 4 g

1. B — 1 FH M mmselfsup/models/algorithms/customized_algorithm.py Ff7EH g 5B
CustomizedAlgorithm,

Copyright (c) OpenMMLab. All rights reserved.

import torch

from ..builder import ALGORITHMS, build_backbone, build_head, build_neck

from ..utils import GatherLayer

(continues on next page)

36 Chapter 6. 72 3: FiNFAIBIR

MMSelfSup, Release 0.9.0

(continued from previous page)

from .base import BaseModel

@ALGORITHMS.register_module ()
class CustomizedAlgorithm (BaseModel) :

def _ init__ (self, backbone, neck=None, head=None, init_cfg=None) :
super (SimCLR, self)._ _init__ (init_cfqg)
TODO

def forward_train(self, img, **kwargs):

TODO

2. fF mmselfsup/models/algorithms/__init_ .py A%,

from .customized_algorithm import CustomizedAlgorithm

_all___ = [..., CustomizedAlgorithm, ...]

3 AR E SO R R E

model = dict (
type="'CustomizedAlgorightm',
backbone=. ..,
neck=...,

head=...)

6.4. &HFMBHD 37

MMSelfSup, Release 0.9.0

38

Chapter 6. #2 3: RIMFAJER

CHAPTER

SEVEN

HiE 4. BENLMILREE

o HRE 4 AR
— i PyTorch Py E AL (k%
— JE il > A
O A) AR &
il A) AR TSRS
* O Tl Bl R R SR
* SRR E
- MR SHE R
* BRIEZHY
* BRI
- AP A E ST
TEAZAET, FATFNGUAEIZAT A 2 B, I THE e s . Emlaesl . shiETRsesng . S8k
REAMCE . BREERTY . BREERTTLAS 7 B € AT 5% -

7.1 #4i5 PyTorch WELIL2E

TN &SR] PyTorch SEELRY BT A (A & , SO HAMEHOX LE 00108 , 1B R BCE SR optimizer
FB
B, AR EAREE SGD, WTAREAT AN M B

optimizer = dict (type='SGD', 1lr=0.0003, weight_decay=0.0001)

BB R, HRRAEA SRR E P B 1e BT, SRCEHABS R, W B MR PyTorch APT 3
RIEEAT

39

https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim
https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim

MMSelfSup, Release 0.9.0

B, WRARE A Adam HIXBESECH torch.optim.Adam(params, 1r=0.001, betas=(0.9, O.
999), eps=1e-08, weight_decay=0, amsgrad=False), WEEIIITUWFHE

optimizer = dict (type='Adam', 1lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0,

— amsgrad=False)

T PyTorch SEHLIEALES 2 4b, FRATTIAHE mmsel fsup/core/optimizer/optimizers.py HE T—
ALARS,

7.2 TEH|S S EIEE R

7.2 FEHIS)RR AL

GREESAWETE R,)z I 27) SRR IR i P 28 O T RE o LG 27~ SR 08, I AMETC B I 1r_confg
FB.
Bign, 7E SimCLR [I1ZkH, FATH CosineAnnealing F27 > REEIHAMS, FLE 1A

lr_config = dict(
policy='CosineAnnealing',

L)

NG, RS E A HHE] MMCV) CosineAnealinglrUpdaterHook SiEf727 3 B
AN, FRATH SR Hofth=z SR8y, @l Poly 5. WL X L

7.2.2 FEHIF SRR

VIR N BE, 42 A ARGE , T2 T ROl T IR SR AR . SIS, e
MR/ INI R 4 o U £

£ MMSelfSup 1, FATFEBEMA 1r_config MLEa T RAMGM, ERHSHA L TILD:

o warmup : 5 RIFA LR, WAk ‘constant’ . ‘linear’, ‘exp’ B{F None H—, #IHE} None,
DAl 2) ST PR

e warmup_by_epoch : 2% AR IR (epoch) HEANIHEATHIHN, BRIAK True . HISRHEIK E A False , MDA
iter A PR TR

e warmup_iters : WHAYIERREL, 4 warmup_by_epoch=True I}, BA{iHi K (epoch) ; 24
warmup_by_epoch=False I}, PALMEMRREL (iter) .

e warmup_ratio: FMHIEE % 1r = 1r * warmup_ratio,

B

40 Chapter 7. #i2 4: HE X LILHKE

https://arxiv.org/abs/1708.03888
https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L227
https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py

MMSelfSup, Release 0.9.0

lr_config = dict(
policy='CosineAnnealing',
by_epoch=False,
min_lr_ratio=le-2,
warmup="'linear"',
warmup_ratio=le-3,
warmup_iters=20 * 1252,

warmup_by_epoch=False)

2. BRI HBRBTIA

lr_config = dict(
policy='CosineAnnealing',
min_1lr=0,
warmup='exp',
warmup_iters=5,
warmup_ratio=0.1,

warmup_by_epoch=True)

7.2.3 EHIZhE FE R

AT R AR) B U A B, A BRI SR

Sl AR B -5 2 > R RESR —RAEN, Biln, DATRECE AT NS BT 2% CyclicLrUp-

dater 1 CyclicMomentumUpdater.
B

lr_config = dict(
policy='cyclic',
target_ratio=(10, 1le-4),
cyclic_times=1,
step_ratio_up=0.4,

)

momentum_config

= dict (
policy='cyclic',
target_ratio=(0.85 / 0.95, 1),
cyclic_times=1,

step_ratio_up=0.4,

7.2. SEHF > RIF KR

41

https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327
https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327
https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130

MMSelfSup, Release 0.9.0

7.24 SRILFRAEE

— SRR AL SR, SR TR E SRR AN B, 5140 BatchNorm J2 /RS A EE 3 Ul w5 6 A [£ 4
BIRMAARE TR, T IHFEAECE, A1 optimizer H1ff) paramwise_options ST
it B

B, WIS BatchNorm 1, GroupNorm BS54 VA K 452) bias B AT R, FATATPABEH AT
[[=EEE

optimizer = dict(
type=...,
lr=...,
paramwise_options={
"(bn|gn) (\\d+) ?. (weight|bias) ':
dict (weight_decay=0.),
'bias': dict (weight_decay=0.)

73 BEHBSHERT

=

731 BERHKE

i1 PyTorch fiAbdni AT RE, WATILIRAL 7 — LR TNBE, BIUNBEIERTY . BB RIS, HE2HM T SH
MMCV,

HHIFATCHHHE optimizer_config FEHRIN grad_clip SHCRMITHIERD, TN &%
PyTorch 3044,

ABIGTE

optimizer_config = dict (grad_clip=dict (max_norm=35, norm_type=2))
norm_type: WM EHRA, WAEATEK 2.

0 QR B O R B, AR BN B P grad_clip=None, FHEMI _delete =True,

732 gER

HWHEBHESZ W, SRR/ (batch size) HAERENE/NIME, XA RES BRI TERE. 7T LAGET
B ST R A — [R

MBI -

data = dict (samples_per_gpu=64)

optimizer_config = dict (type="DistOptimizerHook", update_interval=4)

42 Chapter 7. #i2 4: HE X LILHKE

https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py
https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html

MMSelfSup, Release 0.9.0

PRI, 4 4 A iter AT RfEdE. T IR HEK GPU _ERJHEICR/N A 64, BAEEM T #5Kk GPU
B RN 256, R

data = dict (samples_per_gpu=256)

optimizer_config = dict (type="OptimizerHook")

7.4 ARBEXRILSEZE

TEZEARBFFEF TSz, RS R Z F] MMSelfSup A SEEAI LA ¥, AT AT DA T 08

JE mmselfsup/core/optimizer/optimizers.py PELIAA) CustomizedOptim

import torch
from torch.optim import * # noga: F401,F403
from torch.optim.optimizer import Optimizer, required

from mmcv.runner.optimizer.builder import OPTIMIZERS

@OPTIMIZER.register_module ()

class CustomizedOptim (Optimizer) :

def _ _init__ (self, *args, **kwargs):

TODO

@torch.no_grad()
def step(self):

TODO

B mmsel fsup/core/optimizer/__init__.py, HHFA

from .optimizers import CustomizedOptim

from .builder import build_optimizer

all = ['CustomizedOptim', 'build_optimizer', ...]

FERCE SCIF PR E AL &%

optimizer = dict(

type="'CustomizedOptim',

7.4. APBEEXRIESE 43

MMSelfSup, Release 0.9.0

44

Chapter 7. #i2 4: HE X LILHKE

CHAPTER

EIGHT

HiES: HENERETESH

« RS HiE BRALEITSH
- & i AR
- BT
* BIAIG4 T
- B SO 1 CheckpointHook
- H#% 7 LoggerHooks
- B9 IE4#4 ¥~ EvalHook
— fEFH HA P T
- HEXHT
1Ll
* 2. BT
* 3 B E
TEARZRET, FAVHN R NAITEISAT B OB, FET B 8 AR T 7%

8.1 EHITIER

TARRE— I (5540, IR0 502, M THeEstrWr s, X R oAb haraem

o, FATEOAG BT KM T (EpochBasedRunner), A “JHHIA FRIHUEXT AT 51—
AR ESRATZ DAl RATRABEIITIIGMES, I A TEMN AT B

workflow = [('train', 1)]

A AT REA EAE N R A v S A AR AR IR IR AR B —28g5hR (Bdn, Bk, HERRZ) . 7KAoL
&, TR AR E R

45

MMSelfSup, Release 0.9.0

[('"train', 1), ('val', 1)1

ARk, BF—RIl%G— it R Z AT,
BOATEOLT , BATEHEAERE DI ZR4E UU5 1] EvalHook HEATRIUEIILE.

8.2 §9¥%

#THLHIAE OpenMMLab JTFSEVEAPEH BT ARK) 2, S & IATa% 7T ASE IO I i A e A2 iy Je ST 2 A 7
R, AT DA S 2 PR T

W AP TaR A RN, H i E2 Ak
« BRI T

RO ZRe T s oA, — o — Sl BER B 1, ELARERIES, — BT E Bt
ek

* EMT

SE M8 Flsd custom_hooks M, —BCN—LEMESRINIIREREY T, TREAERCE SRR EM R, A
TERH T I SCH AP E N ‘'NORMAL

% 2l E
PLSCmfhE B TRIPATIY , BIIZhET, HESATEI B B TRIRATINTY . 7 (R

8.2.1 Bikilgr$a¥F

L WL TRl custom_hooks { i, (H&FEZTT#E (Runner) HEMAHM, BI1Z:

OptimizerHook, MomentumUpdaterHook # LrUpdaterHook FEL 1L % vk T 34T TN, Iter—

TimerHook MITHCRATAINIA], HBIASHFHES.

A] < 2l CheckpointHook, LoggerHooks AN EvalHook,

WE L4595 CheckpointHook

MMCYV # runner f§i [l checkpoint_config F#JiE4k CheckpointHook,

checkpoint_config = dict (interval=1)

H PRI AR B max_keep_ckpts FAULRAF/ D BB E XM, & it save_optimizer HE & EH
ACE PR T, 2T &% X L,

46 Chapter 8. %2 5: BENEEETER

https://www.calltutors.com/blog/what-is-hook/
https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/hooks/checkpoint.py
https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.CheckpointHook

MMSelfSup, Release 0.9.0

H#&4$F LoggerHooks

log_config 3 T 20 e F, H e AR EIEFE . Hfil, MMCV (¥ Text LoggerHook , WandbLog-
gerHook, Ml1flowLoggerHook, NeptuneLoggerHook, DvcliveLoggerHook fl TensorboardLog—

gerHook. WAL LAk,

log_config = dict(
interval=50,
hooks=[
dict (type='TextLoggerHook"'),
dict (type='TensorboardLoggerHook")

I8F$39¥ EvalHook

Ao Y evaluation FEEH T W54 EvalHook.

EvalHook H—Y{FBASH, Ul interval, save_best fll start &, HAWZSE, Wl metrics ¥Fpki%
2 dataset .evaluate ().

evaluation = dict (interval=1l, metric='accuracy', metric_options={'topk': (1,)})

AT LAEL B save_best GRATHUT SR GRS R AR AN -

"auto" RN H TR AT RIATHEA M LI
W E—MFEY key Wi "accuracy top-1",
evaluation = dict (interval=1, save_best="auto", metric='accuracy', metric_options={

—'topk': (1,)1})

TESE— LRSI, W PAE BB start Bl IGREEAFe I R BE A2 3R, AT ZIRHTR] . 4 E

evaluation = dict (interval=1, start=200, metric='accuracy', metric_options={'topk':.

= (1,)}

FORTES 200 Je 2w, HPFTUIZRiAE, APATEAE; MR 200 JF4G, TEf—RIZRZ Gt TIviE.

8.3 EHHEMAET

—LBES L MMCV 1 MMClassification HtSZ 3y -
¢« EMAHook
* SyncBuffersHook

¢ EmptyCacheHook

83. ERAMBAENTF 47

https://mmcv.readthedocs.io/zh_CN/latest/api.html#mmcv.runner.LoggerHook
https://github.com/open-mmlab/mmclassification/blob/master/mmcls/core/evaluation/eval_hooks.py
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/ema.py
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/sync_buffer.py
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/memory.py

MMSelfSup, Release 0.9.0

¢ ProfilerHook

R MR T E LA MMCV WSl AT PAE EB e B DAGE % 1, A Mgt

mmcv_hooks = [

dict (type='MMCVHook', a=a_value, b=b_value, priority='NORMAL")

Bl A EMAHOOk , #EAT—IK EMA H[H]ff 2 100 4> iter:

custom_hooks = [

dict (type='EMAHook', interval=100, priority='HIGH')

8.4 HEMNEF

8.4.1 1. QIE—1"HF%aF

ik LA —NFE MMSelfSup H @1 — T8 TR 7R Bl :

from mmcv.runner import HOOKS, Hook

@HOOKS . register_module ()

class MyHook (Hook) :

def _ init_ (self, a, b):

pass

def before_run(self, runner):

pass

def after_run(self, runner):

pass

def before_epoch(self, runner):

pass

def after_epoch(self, runner):

pass

def before_iter(self, runner):

(continues on next page)

48 Chapter 8. %2 5: BENEEETER

https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/profiler.py

MMSelfSup, Release 0.9.0

(continued from previous page)

pass

def after_iter(self, runner):

pass

I THITIRE, 240 E W TAEUIZRI BB BOF 2T, Hll before_run, after_run,

before_epoch, after_epoch, before_iter fll after_iter,

8.4.2 2. B \FEaF

2, FESA MyHook. {BBIZICMFAE mmselfsup/core/hooks/my_hook.py, HPMIMNERAE:

o £ mmselfsup/core/hooks/__init__ .py #fT8 A, WIR:

from .my_hook import MyHook

all [..., MyHook, ...]

o FEECE SRR custom_imports AR FEIFA

custom_imports = dict (imports=['mmselfsup.core.hooks.my_hook'], allow_failed_

—imports=False)

8.4.3 3. &AcEH

custom_hooks = [

dict (type='MyHook', a=a_value, b=b_value)

AT priorvity ZHREH LR, WFFR:

custom_hooks = [

dict (type='MyHook', a=a_value, b=b_value, priority='ABOVE_NORMAL")

PIAEOLT, fEEAbE R, TR 2% B NORMAL

8.4. HEMNIF 49

MMSelfSup, Release 0.9.0

50

Chapter 8. #25: HEER

N—p—

1E1T

S8

CHAPTER

NINE

iz 6: BITEEEN

TE MMSelfSup ', FATHLHE TV 2 HLMETEN, PR AR AT DATEARS [B R A 55 v A T3l o ok BB AL T2

ABREANG TR AFREAN AT 1] MMSelfSup

o HAE 60 dnATHEEPEI
S

k

%

*

%

—

Y)

VOC SVM / Low-shot SVM

AT

ImageNet 2 &0 2

ImageNet 4R iT

- Kol
- 4

B4, RN iZEd tools/model_converters/extract_backbone_weights.py HEHURA backbone

.

éj\

ES

JI A AR BT

python ./tools/model_converters/extract_backbone_weights.py {CHECKPOINT} {MODEL_FILE}

By

e CHECKPOINT: selfsup J5 LA L, 24 FK-A epoch_*.pth

e MODEL_FILE: i backbone AU EE 1. WA ISE,
A

NI PRETRAIN 2 fiff i SR AL

51

MMSelfSup, Release 0.9.0

9.1 43

XT3, BATE tools/benchmarks/classification/EJepdRft T A, HH 44 . sh 4,
1A~HT VOC SVM M K40 45 1 S92, 1A T ImageNet 5803 43 F54F: 55 1 SC 14

9.1.1 VOC SVM / Low-shot SVM

N T AT AFEMETHI , ARMOZE SeE AR VOC ik, B & (92407715 % prepare_data.md.,
N TSR, ARRT DABATRA R A4

AT AR
bash tools/benchmarks/classification/svm_voc07/dist_test_svm_pretrain.sh SELFSUP_

—CONFIG GPUS PRETRAIN FEATURE_LIST

slurm MK
bash tools/benchmarks/classification/svm_voc07/slurm_test_svm_pretrain.sh PARTITION

— JOB_NAME SELFSUP_CONFIG PRETRAIN FEATURE_LIST

BEAL, ASRARAEPERL runner fRTFHY ckpt SCPFE, R DAISAT R I AR -

A ARRA
bash tools/benchmarks/classification/svm_voc07/dist_test_svm_epoch.sh SELFSUP_

—~CONFIG EPOCH FEATURE_LIST

slurm JRA
bash tools/benchmarks/classification/svm_voc07/slurm_test_svm_epoch.sh PARTITION

— {JOB_NAME SELFSUP_CONFIG EPOCH FEATURE_LIST

J ckpt MAmRE, RS epoch_*.pth S0, AN SR .
S
* ${SELFSUP_CONFIG} ;& H W& SLu i hc & 4

e S{FEATURE_LIST} 2—/NFire, 187 layerl F layerS (45RAE 9744 G40, a0 AR HARTEAY layerS
, 4 FEATURE_LIST 2 “feat5”, WISRARAEPEAL A 4HE, T4 FEATURE_LIST &2 “featl feat2
feat3 feat4 feat5” (FHZHEFE). WEREZS, BN FEATURE_LIST 24 “feat5”,

« PRETRAIN: TIZRAIIHL SO,
o WRAREEE GPU 4R, R AFEAT &1 FF3K L. GPUS_PER_NODE=4 GPUS=4.

* EPOCH J2/REM L ckpt [epoch %4

52 Chapter 9. #%2 6: E{TEA&FN

https://github.com/open-mmlab/mmselfsup/blob/master/docs/en/prepare_data.md

MMSelfSup, Release 0.9.0

9.1.2 LeiiFfh

LR VEAN 2 el A EE TN 2 —, RS TILRS SR B, ARG LA, RITEBCH
RIS Z NS WAL, Hk, N T8 vAl, ORI . sh AR EEIZ:. SRR
¥4 2 ImageNet. Places205 7 iNaturalist18.

A AR

bash tools/benchmarks/classification/dist_train_linear.sh CONFIG PRETRAIN

slurm MK

bash tools/benchmarks/classification/slurm_train_linear.sh PARTITION JOB_NAME
— {CONFIG PRETRAIN

o BRIAR GPU 2 8, MU GPUS i), W iEAHH Y MU BE B SO i) samples_per_gpu , PABAERE
batch size 2} 256,

* CONFIG: ffiffl configs/benchmarks/classification/ FIECE . BA A imagenet (R
% imagenet_*percent XffJ¢), places205 1 inaturalist2018.

e PRETRAIN: Tl szt soft,

9.1.3 ImageNet F K EH3

N1 1547 ImageNet “E B 722, FATPIAREIN . sh AR E I

A ARA

bash tools/benchmarks/classification/dist_train_semi.sh CONFIG PRETRAIN

slurm A

bash tools/benchmarks/classification/slurm_train_semi.sh PARTITION JOB_NAME
— {CONFIG PRETRAIN

* BRIAH GPU $ihb2 4.

e CONFIG: {fiff] configs/benchmarks/classification/imagenet/ FHECE LM, %48 ima-
genet_*percent MAFJE,

e PRETRAIN: FiilllZsfiisti s,

9.1. 4k 53

MMSelfSup, Release 0.9.0

9.1.4 ImageNet R4Bir 93

N T B AR A B PEIIR AL B ISR AR, ART DAIBAT AR fir

AT RA

bash tools/benchmarks/classification/knn_imagenet/dist_test_knn_pretrain.sh SELFSUP__
—~CONFIG PRETRAIN

slurm JRA

bash tools/benchmarks/classification/knn_imagenet/slurm_test_knn_pretrain.sh

— {PARTITION JOB_NAME SELFSUP_CONFIG PRETRAIN

WAL, ARARAETEAS runner CRAFAY ckpt SCUF, ARV DAISAT R IEAY AT 2o

S E

bash tools/benchmarks/classification/knn_imagenet/dist_test_knn_epoch.sh SELFSUP__
—~CONFIG EPOCH

slurm A

bash tools/benchmarks/classification/knn_imagenet/slurm_test_knn_epoch.sh PARTITION

— JOB_NAME SELFSUP_CONFIG EPOCH

I ckpt JAmE, FCRSEEN] epoch_*.pth SCfF, Avils R UBLE .
s
* ${SELFSUP_CONFIG} sg [i ses e &3t
« PRETRAIN: TRIZHAIRLEL SO
o QERARARECE GPU A %cE:, AR PATEAS 9 HITFL I L GPUS_PER_NODE=4 GPUS=4,

* EPOCH ;2RI ckpt 1Y epoch %4,

9.2 &

FEX L, FATB T] MMDetection S 58 MU IAESS . B 5G, BIRIRE 420% TMIM, E)¢ OpenMMLab
AT H

pip install openmim

LGN AR A) -
BEAh, 55% MMDet {44225 AR 1 45

LERSEINR , YRR LA fa) B iy £z 47 MMDet

54 Chapter 9. #%2 6: E{TEA&FN

https://github.com/open-mmlab/mim
https://github.com/open-mmlab/mmdetection/blob/master/docs/en/get_started.md
https://github.com/open-mmlab/mmdetection/blob/master/docs/en/1_exist_data_model.md

MMSelfSup, Release 0.9.0

A AR

bash tools/benchmarks/mmdetection/mim_dist_train.sh S{CONFIG} S{PRETRAIN} S{GPUS}

slurm WA
bash tools/benchmarks/mmdetection/mim_slurm_train.sh S${PARTITION} S{CONFIG}

— {PRETRAIN}

Yk
e CONFIG: f#if configs/benchmarks/mmdetection/ FHIECE 4 E R E B0 E 4.
o PRETRAIN: FiiiI| L5 S f:

BCE WERARAR T detectron UG INAE 55, FATTHRARBE—LEICE SC1F. W SFHINSTALL md AT 22%¢, FHH i H
SRR HESS detectron2 P YRS -

conda activate detectron2 # #HX E{FJf| detectron2 33, TN open-mmlab I3

cd benchmarks/detection

python convert-pretrain-to-detectron2.py S{WEIGHT FILE} ${OUTPUT_FILE} # oh/{FH .pkl.
SAE AR XY R4

bash run.sh S{DET_CFG} S{OUTPUT_FILE,

2

XN TEX S EES, RNEAEHEZ MMSegnentation o ¥4, BRIELLL KT [MIM] (https://github.com/
—open-mmlab/mim) , AL OpenMMLab é’y~/|\lj’i§o

" "shell

pip install openmim
RREZKBAEFEE .

WA, FHHE MMSeg W [E 3] (https://github.com/open-mmlab/mmsegmentation/blob/master/docs/
—get_started.md) 1 [HFE L] (https://github.com/open-mmlab/mmsegmentation/blob/master/

—docs/dataset_prepare.mdffprepare-datasets),
REJE, VRV #4247 MMSeg

" "shell
A AR

bash tools/benchmarks/mmsegmentation/mim_dist_train.sh ${CONFIG} S{PRETRAIN/} S${GPUS/

slurm A
bash tools/benchmarks/mmsegmentation/mim_slurm_train.sh S{PARTITION} S{CONFIG}

— {PRETRAIN }

(continues on next page)

9.2. &l 55

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md
https://github.com/facebookresearch/detectron2/tree/main/datasets
https://github.com/facebookresearch/detectron2/tree/main/datasets

MMSelfSup, Release 0.9.0

(continued from previous page)

£
- "CONFIG' : f# /]l "configs/benchmarks/mmsegmentation/"
~ "PRETRAIN : Tl % A AR Xt

THWEEXHHST T EE X,

56

Chapter 9. 12 6: E{TEA&TEN

CHAPTER

TEN

BYOL

10.1 Bootstrap your own latent: A new approach to self-supervised

Learning

Bootstrap Your Own Latent (BYOL) is a new approach to self-supervised image representation learning. BYOL relies
on two neural networks, referred to as online and target networks, that interact and learn from each other. From an
augmented view of an image, we train the online network to predict the target network representation of the same image
under a different augmented view. At the same time, we update the target network with a slow-moving average of the

online network.

10.2 Citation

@inproceedings{grill2020bootstrap,
title={Bootstrap your own latent: A new approach to self-supervised learning},
author={Grill, Jean—-Bastien and Strub, Florian and Altch{\'e}, Florent and Tallec, .
—Corentin and Richemond, Pierre H and Buchatskaya, Elena and Doersch, Carl and Pires,
— Bernardo Avila and Guo, Zhaohan Daniel and Azar, Mohammad Gheshlaghi and others},
booktitle={NeurIPS},
year={2020}

10.3 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNetlk dataset.

57

MMSelfSup, Release 0.9.0

10.3.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

10.3.2 Classification

The classification benchmarks includes 3 downstream task datasets, ImageNet, iNaturalist2018 and Places205. If not

specified, the results are Top-1 (%).

ImageNet Linear Evaluation

The Featurel - FeatureS don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with Global AveragePooling. Please refer to {file name} for details

of config.

iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inatl8.py and {file name} for details of config.

Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and {file name} for details of config.

Semi-Supervised Classification

¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear

classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

1le-3 and the learning rate multiplier is indicated like headl, head10, head100.

¢ Please use —deterministic in this benchmark.

58 Chapter 10. BYOL

MMSelfSup, Release 0.9.0

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

10.3.3 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

C0OCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

10.3.4 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to {file name} for details of config.

Cityscapes

Please refer to {file name} for details of config.

10.3. Models and Benchmarks 59

MMSelfSup, Release 0.9.0

60

Chapter 10. BYOL

CHAPTER

ELEVEN

DEEPCLUSTER

11.1 Deep Clustering for Unsupervised Learning of Visual Features

Clustering is a class of unsupervised learning methods that has been extensively applied and studied in computer vision.
Little work has been done to adapt it to the end-to-end training of visual features on large scale datasets. In this work, we
present DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster assignments
of the resulting features. DeepCluster iteratively groups the features with a standard clustering algorithm, k-means, and

uses the subsequent assignments as supervision to update the weights of the network.

11.2 Citation

@inproceedings{caron2018deep,
title={Deep clustering for unsupervised learning of visual features},
author={Caron, Mathilde and Bojanowski, Piotr and Joulin, Armand and Douze,.
—Matthijs},
booktitle={ECCV},
year={2018}

11.3 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNet1k dataset.

61

MMSelfSup, Release 0.9.0

11.3.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

11.3.2 ImageNet Linear Evaluation

The Featurel - FeatureS don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to file name for details

of config.

11.3.3 iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.

11.3.4 Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.

Semi-Supervised Classification

¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear

classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

le-3 and the learning rate multiplier is indicated like head1, head10, head100.
¢ Please use —deterministic in this benchmark.

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

62 Chapter 11. DeepCluster

MMSelfSup, Release 0.9.0

11.3.5 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

COCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

11.3.6 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to file for details of config.

Cityscapes

Please refer to file for details of config.

11.3. Models and Benchmarks 63

MMSelfSup, Release 0.9.0

64

Chapter 11. DeepCluster

CHAPTER

TWELVE

DENSECL

12.1 Dense Contrastive Learning for Self-Supervised Visual Pre-
Training

To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-
trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and
pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly
works at the level of pixels (or local features) by taking into account the correspondence between local features. We present
dense contrastive learning (DenseCL), which implements self-supervised learning by optimizing a pairwise contrastive

(dis)similarity loss at the pixel level between two views of input images.

12.2 Citation

@inproceedings{wang202ldense,
title={Dense contrastive learning for self-supervised visual pre-training},
author={Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei}
booktitle={CVPR},
year={2021}

12.3 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNet1k dataset.

65

MMSelfSup, Release 0.9.0

12.3.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

12.3.2 ImageNet Linear Evaluation

The Featurel - FeatureS don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to file name for details

of config.

12.3.3 iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.

12.3.4 Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.

Semi-Supervised Classification

¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear

classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

le-3 and the learning rate multiplier is indicated like head1, head10, head100.
¢ Please use —deterministic in this benchmark.

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

66 Chapter 12. DenseCL

MMSelfSup, Release 0.9.0

12.3.5 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

COCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

12.3.6 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to file for details of config.

Cityscapes

Please refer to file for details of config.

12.3. Models and Benchmarks 67

MMSelfSup, Release 0.9.0

68

Chapter 12. DenseCL

CHAPTER

THIRTEEN

MOCO V1 /V2

13.1 Momentum Contrast for Unsupervised Visual Representation
Learning (MoCo v1)

We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on con-
trastive learning as dictionary look-up, we build a dynamic dictionary with a queue and a moving-averaged encoder.
This enables building a large and consistent dictionary on-the-fly that facilitates contrastive unsupervised learning. MoCo
provides competitive results under the common linear protocol on ImageNet classification. More importantly, the repre-

sentations learned by MoCo transfer well to downstream tasks.

13.2 Citation

@inproceedings{he2020momentum,
title={Momentum contrast for unsupervised visual representation learning},
author={He, Kaiming and Fan, Haogi and Wu, Yuxin and Xie, Saining and Girshick,.
—~Ross},
booktitle={CVPR},
year={2020}

13.3 Improved Baselines with Momentum Contrastive Learning
(MoCo v2)

Contrastive unsupervised learning has recently shown encouraging progress, e.g., in Momentum Contrast (MoCo) and
SimCLR. In this note, we verify the effectiveness of two of SIimCLR’ s design improvements by implementing them
in the MoCo framework. With simple modifications to MoCo—namely, using an MLP projection head and more data
augmentation—we establish stronger baselines that outperform SimCLR and do not require large training batches. We

hope this will make state-of-the-art unsupervised learning research more accessible.

69

MMSelfSup, Release 0.9.0

13.4 Citation

@article{chen2020improved,
title={Improved baselines with momentum contrastive learning},
author={Chen, Xinlei and Fan, Haogi and Girshick, Ross and He, Kaiming},
journal={arXiv preprint arXiv:2003.04297},
year={2020}

13.5 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNet1k dataset.

13.5.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

13.5.2 ImageNet Linear Evaluation

The Featurel - Feature5 don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to file name for details

of config.

13.5.3 iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.

70 Chapter 13. MoCo vi1/v2

MMSelfSup, Release 0.9.0

13.5.4 Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.

Semi-Supervised Classification
¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear
classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

le-3 and the learning rate multiplier is indicated like headl, head10, head100.
¢ Please use —deterministic in this benchmark.

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

13.5.5 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

C0OCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

13.5.6 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

13.5. Models and Benchmarks 71

MMSelfSup, Release 0.9.0

Pascal VOC 2012 + Aug

Please refer to file for details of config.

Cityscapes

Please refer to file for details of config.

72

Chapter 13. MoCo v1/v2

CHAPTER

FOURTEEN

NPID

14.1 Unsupervised Feature Learning via Non-Parametric Instance
Discrimination

Neural net classifiers trained on data with annotated class labels can also capture apparent visual similarity among cat-
egories without being directed to do so. We study whether this observation can be extended beyond the conventional
domain of supervised learning: Can we learn a good feature representation that captures apparent similar- ity among

instances, instead of classes, by merely asking the feature to be discriminative of individual instances?

We formulate this intuition as a non-parametric classification problem at the instance-level, and use noise-contrastive
estimation to tackle the computational challenges imposed by the large number of instance classes. Our experimental
results demonstrate that, under unsupervised learning settings, our method surpasses the state-of-the-art on ImageNet

classification by a large margin.

Our method is also remarkable for consistently improving test performance with more training data and better network
architectures. By fine-tuning the learned feature, we further obtain competitive results for semi-supervised learning and
object detection tasks. Our non-parametric model is highly compact: With 128 features per image, our method requires

only 600MB storage for a million images, enabling fast nearest neighbour retrieval at the run time.

14.2 Citation

@inproceedings{wu20l18unsupervised,
title={Unsupervised feature learning via non-parametric instance discrimination},
author={Wu, Zhirong and Xiong, Yuanjun and Yu, Stella X and Lin, Dahua},
booktitle={CVPR},
year={2018}

73

MMSelfSup, Release 0.9.0

14.3 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNet1k dataset.

14.3.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

14.3.2 ImageNet Linear Evaluation

The Featurel - Feature5 don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with Global AveragePooling. Please refer to file name for details

of config.

14.3.3 iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.

14.3.4 Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.

Semi-Supervised Classification

¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear

classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

1le-3 and the learning rate multiplier is indicated like headl, head10, head100.

¢ Please use —deterministic in this benchmark.

74 Chapter 14. NPID

MMSelfSup, Release 0.9.0

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

14.3.5 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

C0OCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

14.3.6 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to file for details of config.

Cityscapes

Please refer to file for details of config.

14.3. Models and Benchmarks 75

MMSelfSup, Release 0.9.0

76

Chapter 14. NPID

CHAPTER

FIFTEEN

oDC

15.1 Online Deep Clustering for Unsupervised Representation
Learning

Joint clustering and feature learning methods have shown remarkable performance in unsupervised representation learn-
ing. However, the training schedule alternating between feature clustering and network parameters update leads to un-
stable learning of visual representations. To overcome this challenge, we propose Online Deep Clustering (ODC) that
performs clustering and network update simultaneously rather than alternatingly. Our key insight is that the cluster cen-
troids should evolve steadily in keeping the classifier stably updated. Specifically, we design and maintain two dynamic
memory modules, i.e., samples memory to store samples’ labels and features, and centroids memory for centroids evo-
lution. We break down the abrupt global clustering into steady memory update and batch-wise label re-assignment. The
process is integrated into network update iterations. In this way, labels and the network evolve shoulder-to-shoulder
rather than alternatingly. Extensive experiments demonstrate that ODC stabilizes the training process and boosts the

performance effectively.

15.2 Citation

@inproceedings{zhan2020online,
title={Online deep clustering for unsupervised representation learning},
author={Zhan, Xiaohang and Xie, Jiahao and Liu, Ziwei and Ong, Yew-Soon and Loy, .
—Chen Change},
booktitle={CVPR},
year={2020}

77

MMSelfSup, Release 0.9.0

15.3 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNet1k dataset.

15.3.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

15.3.2 ImageNet Linear Evaluation

The Featurel - Feature5 don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with Global AveragePooling. Please refer to file name for details

of config.

15.3.3 iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.

15.3.4 Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.

Semi-Supervised Classification

¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear

classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

1le-3 and the learning rate multiplier is indicated like headl, head10, head100.

¢ Please use —deterministic in this benchmark.

78 Chapter 15. ODC

MMSelfSup, Release 0.9.0

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

15.3.5 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

C0OCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

15.3.6 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to file for details of config.

Cityscapes

Please refer to file for details of config.

15.3. Models and Benchmarks 79

MMSelfSup, Release 0.9.0

80

Chapter 15. ODC

CHAPTER

SIXTEEN

RELATIVE LOCATION

16.1 Unsupervised Visual Representation Learning by Context Pre-
diction

This work explores the use of spatial context as a source of free and plentiful supervisory signal for training a rich visual
representation. Given only a large, unlabeled image collection, we extract random pairs of patches from each image and
train a convolutional neural net to predict the position of the second patch relative to the first. We argue that doing well on
this task requires the model to learn to recognize objects and their parts. We demonstrate that the feature representation
learned using this within-image context indeed captures visual similarity across images. For example, this representation
allows us to perform unsupervised visual discovery of objects like cats, people, and even birds from the Pascal VOC 2011
detection dataset. Furthermore, we show that the learned ConvNet can be used in the RCNN framework and provides a
significant boost over a randomly-initialized ConvNet, resulting in state-of-the-art performance among algorithms which

use only Pascal-provided training set annotations.

16.2 Citation

@inproceedings{doersch20l15unsupervised,
title={Unsupervised visual representation learning by context prediction},
author={Doersch, Carl and Gupta, Abhinav and Efros, Alexei A},
booktitle={ICCV},
year={2015}

81

MMSelfSup, Release 0.9.0

16.3 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNet1k dataset.

16.3.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

16.3.2 ImageNet Linear Evaluation

The Featurel - Feature5 don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with Global AveragePooling. Please refer to file name for details

of config.

16.3.3 iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.

16.3.4 Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.

Semi-Supervised Classification

¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear

classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

1le-3 and the learning rate multiplier is indicated like headl, head10, head100.

¢ Please use —deterministic in this benchmark.

82 Chapter 16. Relative Location

MMSelfSup, Release 0.9.0

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

16.3.5 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

C0OCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

16.3.6 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to file for details of config.

Cityscapes

Please refer to file for details of config.

16.3. Models and Benchmarks 83

MMSelfSup, Release 0.9.0

84

Chapter 16. Relative Location

CHAPTER

SEVENTEEN

ROTATION PREDICTION

17.1 Unsupervised Representation Learning by Predicting Image
Rotation

Over the last years, deep convolutional neural networks (ConvNets) have transformed the field of computer vision thanks
to their unparalleled capacity to learn high level semantic image features. However, in order to successfully learn those
features, they usually require massive amounts of manually labeled data, which is both expensive and impractical to
scale. Therefore, unsupervised semantic feature learning, i.e., learning without requiring manual annotation effort, is of
crucial importance in order to successfully harvest the vast amount of visual data that are available today. In our work we
propose to learn image features by training ConvNets to recognize the 2d rotation that is applied to the image that it gets
as input. We demonstrate both qualitatively and quantitatively that this apparently simple task actually provides a very
powerful supervisory signal for semantic feature learning. We exhaustively evaluate our method in various unsupervised
feature learning benchmarks and we exhibit in all of them state-of-the-art performance. Specifically, our results on those
benchmarks demonstrate dramatic improvements w.r.t. prior state-of-the-art approaches in unsupervised representation

learning and thus significantly close the gap with supervised feature learning.

17.2 Citation

@inproceedings{komodakis20l18unsupervised,
title={Unsupervised representation learning by predicting image rotations},
author={Komodakis, Nikos and Gidaris, Spyros},
booktitle={ICLR},
year={2018}

85

MMSelfSup, Release 0.9.0

17.3 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNet1k dataset.

17.3.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

17.3.2 ImageNet Linear Evaluation

The Featurel - Feature5 don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with Global AveragePooling. Please refer to file name for details

of config.

17.3.3 iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.

17.3.4 Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.

Semi-Supervised Classification

¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear

classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

1le-3 and the learning rate multiplier is indicated like headl, head10, head100.

¢ Please use —deterministic in this benchmark.

86 Chapter 17. Rotation Prediction

MMSelfSup, Release 0.9.0

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

17.3.5 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

C0OCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

17.3.6 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to file for details of config.

Cityscapes

Please refer to file for details of config.

17.3. Models and Benchmarks 87

MMSelfSup, Release 0.9.0

88

Chapter 17. Rotation Prediction

CHAPTER

EIGHTEEN

SIMCLR

18.1 A Simple Framework for Contrastive Learning of Visual Repre-
sentations

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently
proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank.
In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically
study the major components of our framework. We show that (1) composition of data augmentations plays a critical role
in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and
the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits
from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able
to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear
classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7%

relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50.

18.2 Citation

@inproceedings{chen2020simple,
title={A simple framework for contrastive learning of visual representations},
author={Chen, Ting and Kornblith, Simon and Norouzi, Mohammad and Hinton, Geoffrey},
booktitle={ICML},
year={2020},

89

MMSelfSup, Release 0.9.0

18.3 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNet1k dataset.

18.3.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

18.3.2 ImageNet Linear Evaluation

The Featurel - Feature5 don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with Global AveragePooling. Please refer to file name for details

of config.

18.3.3 iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.

18.3.4 Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.

Semi-Supervised Classification

¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear

classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

1le-3 and the learning rate multiplier is indicated like headl, head10, head100.

¢ Please use —deterministic in this benchmark.

90 Chapter 18. SimCLR

MMSelfSup, Release 0.9.0

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

18.3.5 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

C0OCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

18.3.6 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to file for details of config.

Cityscapes

Please refer to file for details of config.

18.3. Models and Benchmarks 91

MMSelfSup, Release 0.9.0

92

Chapter 18. SimCLR

CHAPTER

NINETEEN

SIMSIAM

19.1 Exploring Simple Siamese Representation Learning

Siamese networks have become a common structure in various recent models for unsupervised visual representation
learning. These models maximize the similarity between two augmentations of one image, subject to certain conditions for
avoiding collapsing solutions. In this paper, we report surprising empirical results that simple Siamese networks can learn
meaningful representations even using none of the following: (i) negative sample pairs, (ii) large batches, (iii) momentum
encoders. Our experiments show that collapsing solutions do exist for the loss and structure, but a stop-gradient operation
plays an essential role in preventing collapsing. We provide a hypothesis on the implication of stop-gradient, and further
show proof-of-concept experiments verifying it. Our “SimSiam” method achieves competitive results on ImageNet and
downstream tasks. We hope this simple baseline will motivate people to rethink the roles of Siamese architectures for

unsupervised representation learning.

19.2 Citation

@inproceedings{chen202lexploring,
title={Exploring simple siamese representation learning},
author={Chen, Xinlei and He, Kaiming},
booktitle={CVPR},
year={2021}

93

MMSelfSup, Release 0.9.0

19.3 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNet1k dataset.

19.3.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

19.3.2 ImageNet Linear Evaluation

The Featurel - Feature5 don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with Global AveragePooling. Please refer to file name for details

of config.

19.3.3 iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.

19.3.4 Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.

Semi-Supervised Classification

¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear

classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

1le-3 and the learning rate multiplier is indicated like headl, head10, head100.

¢ Please use —deterministic in this benchmark.

94 Chapter 19. SimSiam

MMSelfSup, Release 0.9.0

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

19.3.5 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

C0OCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

19.3.6 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to file for details of config.

Cityscapes

Please refer to file for details of config.

19.3. Models and Benchmarks 95

MMSelfSup, Release 0.9.0

96

Chapter 19. SimSiam

CHAPTER

TWENTY

SWAV

20.1 Unsupervised Learning of Visual Features by Contrasting Clus-
ter Assighnments

Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the re-
cent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large
number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an
online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise compar-
isons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments
produced for different augmentations (or “views”) of the same image, instead of comparing features directly as in
contrastive learning. Simply put, we use a “swapped” prediction mechanism where we predict the code of a view from
the representation of another view. Our method can be trained with large and small batches and can scale to unlimited
amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not
require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation
strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without

increasing the memory or compute requirements.

20.2 Citation

@article{caron2020unsupervised,
title={Unsupervised Learning of Visual Features by Contrasting Cluster Assignments},
author={Caron, Mathilde and Misra, Ishan and Mairal, Julien and Goyal, Priya and.
—Bojanowski, Piotr and Joulin, Armand},
booktitle={NeurIPS},
year={2020}

97

MMSelfSup, Release 0.9.0

20.3 Models and Benchmarks

Back to model_zoo.md

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNet1k dataset.

20.3.1 VOC SVM / Low-shot SVM

The Best Layer indicates that the best results are obtained from which layers feature map. For example, if the Best Layer

is feature3, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).

Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

20.3.2 ImageNet Linear Evaluation

The Featurel - Feature5 don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with Global AveragePooling. Please refer to file name for details

of config.

20.3.3 iNaturalist2018 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-84e_inat18.py and file name for details of config.

20.3.4 Places205 Linear Evaluation

Please refer to resnet50_mhead_8xb32-steplr-28e_places205.py and file name for details of config.

Semi-Supervised Classification

¢ In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear

classification head. All parameters are fine-tuned.

* When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the per-
formance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and
the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each
method. The setting of parameters are indicated in the file name. The learning rate is indicated like 1e-1, 1e-2,

1le-3 and the learning rate multiplier is indicated like headl, head10, head100.

¢ Please use —deterministic in this benchmark.

98 Chapter 20. SwAV

MMSelfSup, Release 0.9.0

Please refer to the directories configs/benchmarks/classification/imagenet/
imagenet_lpercent/ of 1% data and configs/benchmarks/classification/imagenet/

imagenet_10percent/ 10% data for details.

20.3.5 Detection

The detection benchmarks includes 2 downstream task datasets, Pascal VOC 2007 + 2012 and COCO2017. This

benchmark follows the evluation protocols set up by MoCo.

Pascal VOC 2007 + 2012

Please refer to faster_rcnn_r50_c4_mstrain_24k.py for details of config.

C0OCO02017

Please refer to mask_rcnn_r50_fpn_mstrain_1x.py for details of config.

20.3.6 Segmentation

The segmentation benchmarks includes 2 downstream task datasets, Cityscapes and Pascal VOC 2012 + Aug. It follows

the evluation protocols set up by MMSegmentation.

Pascal VOC 2012 + Aug

Please refer to file for details of config.

Cityscapes

Please refer to file for details of config.

20.3. Models and Benchmarks 99

MMSelfSup, Release 0.9.0

100 Chapter 20. SwAV

CHAPTER

TWENTYONE

MOCO V3

An Empirical Study of Training Self-Supervised Vision Transformers

21.1 Abstract

This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline
given the recent progress in computer vision: self-supervised learning for Vision Transformers (ViT). While the training
recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built,
especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to basics
and investigate the effects of several fundamental components for training self-supervised ViT. We observe that instability
is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these results are
indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT results in MoCo
v3 and several other self-supervised frameworks, with ablations in various aspects. We discuss the currently positive
evidence as well as challenges and open questions. We hope that this work will provide useful data points and experience

for future research.

21.2 Results and Models

Back to model_zoo.md to download models.

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

were trained on ImageNetlk dataset.

101

https://arxiv.org/abs/2104.02057
https://github.com/open-mmlab/mmselfsup/blob/master/docs/en/model_zoo.md

MMSelfSup, Release 0.9.0

21.2.1 Classification

The classification benchmarks includes 4 downstream task datasets, VOC, ImageNet, iNaturalist2018 and Places205.
If not specified, the results are Top-1 (%).

ImageNet Linear Evaluation

The Linear Evaluation result is obtained by training a linear head upon the pre-trained backbone. Please refer to vit-
small-p16_8xb128-coslr-90e_in1k for details of config.

21.3 Citation

@InProceedings{Chen_2021_ICCV,
title = {An Empirical Study of Training Self-Supervised Vision Transformers},
author = {Chen, Xinlei and Xie, Saining and He, Kaiming},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer.
—Vision (ICCV)},
year = {2021}

102 Chapter 21. MoCo v3

https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/vit-small-p16_8xb128-coslr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/vit-small-p16_8xb128-coslr-90e_in1k.py

CHAPTER

TWENTYTWO

MAE

Masked Autoencoders Are Scalable Vision Learners

22.1 Abstract

This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE
approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two
core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the
visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image
from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g.,
75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models
efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for
learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%)
among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised

pretraining and shows promising scaling behavior.

22.2 Models and Benchmarks

Here, we report the results of the model, which is pre-trained on ImageNet1K for 400 epochs, the details are below:

22.3 Citation

@article{He2021MaskedAA,
title={Masked Autoencoders Are Scalable Vision Learners},
author={Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and
Piotr Doll'ar and Ross B. Girshick},
journal={ArXiv},
year={2021}

103

https://arxiv.org/abs/2111.06377

MMSelfSup, Release 0.9.0

104 Chapter 22. MAE

CHAPTER

TWENTYTHREE

SIMMIM

SimMIM: A Simple Framework for Masked Image Modeling

23.1 Abstract

This paper presents SimMIM, a simple framework for masked image modeling. We simplify recently proposed related
approaches without special designs such as blockwise masking and tokenization via discrete VAE or clustering. To study
what let the masked image modeling task learn good representations, we systematically study the major components
in our framework, and find that simple designs of each component have revealed very strong representation learning
performance: 1) random masking of the input image with a moderately large masked patch size (e.g., 32) makes a strong
pre-text task; 2) predicting raw pixels of RGB values by direct regression performs no worse than the patch classification
approaches with complex designs; 3) the prediction head can be as light as a linear layer, with no worse performance than
heavier ones. Using ViT-B, our approach achieves 83.8% top-1 fine-tuning accuracy on ImageNet-1K by pre-training
also on this dataset, surpassing previous best approach by +0.6%. When applied on a larger model of about 650 million
parameters, SwinV2H, it achieves 87.1% top-1 accuracy on ImageNet- 1K using only ImageNet-1K data. We also leverage
this approach to facilitate the training of a 3B model (SwinV2-G), that by 40x less data than that in previous practice, we
achieve the state-of-the-art on four representative vision benchmarks. The code and models will be publicly available at

https: //github.com/microsoft/SimMIM .

105

https://arxiv.org/abs/2111.09886

MMSelfSup, Release 0.9.0

23.2 Models and Benchmarks

Here, we report the results of the model, and more results will be coming soon.

23.3 Citation

@inproceedings{xie2021simmim,

title={SimMIM: A Simple Framework for Masked Image Modeling},

author={Xie, Zhenda and Zhang, Zheng and Cao, Yue and Lin, Yutong and Bao, Jianmin..
—and Yao, Zhuliang and Dai, Qi and Hu, Han},

booktitle={International Conference on Computer Vision and Pattern Recognition.
— (CVPR) },

year={2022}

106 Chapter 23. SimMIM

CHAPTER

TWENTYFOUR

BARLOWTWINS

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

24.1 Abstract

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks.
A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample. However, a
recurring issue with this approach is the existence of trivial constant solutions. Most current methods avoid such solutions
by careful implementation details. We propose an objective function that naturally avoids collapse by measuring the cross-
correlation matrix between the outputs of two identical networks fed with distorted versions of a sample, and making it as
close to the identity matrix as possible. This causes the embedding vectors of distorted versions of a sample to be similar,
while minimizing the redundancy between the components of these vectors. The method is called Barlow Twins, owing
to neuroscientist H. Barlow’ s redundancy-reduction principle applied to a pair of identical networks. Barlow Twins does
not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a
moving average on the weight updates. Intriguingly it benefits from very high-dimensional output vectors. Barlow Twins
outperforms previous methods on ImageNet for semi-supervised classification in the low-data regime, and is on par with
current state of the art for ImageNet classification with a linear classifier head, and for transfer tasks of classification and

object detection.

24.2 Results and Models

Back to model_zoo.md to download models.

In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models

are pre-trained on ImageNet-1k dataset.

107

https://arxiv.org/abs/2103.03230
https://github.com/open-mmlab/mmselfsup/blob/master/docs/en/model_zoo.md

MMSelfSup, Release 0.9.0

24.2.1 Classification

The classification benchmarks includes 1 downstream task datasets, ImageNet. If not specified, the results are Top-1
(%).

ImageNet Linear Evaluation

The Featurel - FeatureS don’ t have the Global AveragePooling, the feature map is pooled to the specific dimensions
and then follows a Linear layer to do the classification. Please refer to resnet50_mhead_8xb32-steplr-90e.py for details

of config.

The AvgPool result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to resnet50_8xb32-

steplr-100e_in1k.py for details of config.

ImageNet Nearest-Neighbor Classification

The results are obtained from the features after Global AveragePooling. Here, k=10 to 200 indicates different number of

nearest neighbors.

24.3 Citation

@inproceedings{zbontar202lbarlow,
title={Barlow twins: Self-supervised learning via redundancy reduction},
author={Zbontar, Jure and Jing, Li and Misra, Ishan and LeCun, Yann and Deny, St{\
—'e}phane},
booktitle={International Conference on Machine Learning},

year={2021},

108 Chapter 24. BarlowTwins

https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_8xb32-steplr-90e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k.py
https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k.py

CHAPTER

TWENTYFIVE

CAE

Context Autoencoder for Self-Supervised Representation Learning

25.1 Abstract

We present a novel masked image modeling (MIM) approach, context autoencoder (CAE), for self-supervised learning.
We randomly partition the image into two sets: visible patches and masked patches. The CAE architecture consists of:
(i) an encoder that takes visible patches as input and outputs their latent representations, (ii) a latent context regressor that
predicts the masked patch representations from the visible patch representations that are not updated in this regressor, (iii)
a decoder that takes the estimated masked patch representations as input and makes predictions for the masked patches,
and (iv) an alignment module that aligns the masked patch representation estimation with the masked patch representations
computed from the encoder. In comparison to previous MIM methods that couple the encoding and decoding roles, e.g.,
using a single module in BEiT, our approach attempts to separate the encoding role (content understanding) from the
decoding role (making predictions for masked patches) using different modules, improving the content understanding
capability. In addition, our approach makes predictions from the visible patches to the masked patches in the latent
representation space that is expected to take on semantics. In addition, we present the explanations about why contrastive
pretraining and supervised pretraining perform similarly and why MIM potentially performs better. We demonstrate the
effectiveness of our CAE through superior transfer performance in downstream tasks: semantic segmentation, and object

detection and instance segmentation.

25.2 Prerequisite

Create a new folder cae_ckpt under the root directory and download the weights for dalle encoder to that folder

109

https://arxiv.org/abs/2202.03026
https://download.openmmlab.com/mmselfsup/cae/dalle_encoder.pth

MMSelfSup, Release 0.9.0

25.3 Models and Benchmarks

Here, we report the results of the model, which is pre-trained on ImageNet-1k for 300 epochs, the details are below:

25.4 Citation

@article{CAE,
title={Context Autoencoder for Self-Supervised Representation Learning},
author={Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo,
Yunhao Wang, Shumin Han, Ping Luo, Gang Zeng, Jingdong Wang},
journal={ArXiv},

year={2022}

110 Chapter 25. CAE

CHAPTER

TWENTYSIX

& 575i#Hk OPENMMLAB

WA AL TRk, R EART AT NE .
s B (SOREER, bug)
o R REMILLLF

26.1 T{Eimiz

1. fork 3 pull 31 OpenMMLab (3% (mmselfsup)
2. B E AW 3 ORZET master 4} 374232 PR)
3. PEHATIEEROIFIR A E fork Y H ORI O
4. EFA QR P EIE—A PR
TERE: AURARTERIB I — LR ThRE, HTIAKESE), R EAE# A issue KPEITIE.

26.2 REONE

26.2.1 Python

FATRH PEPS AR5 — Y AURS KU o
FATIEE T 5 R AT AR R A A S i XA -
o flake8: —MUE T2 KSR A THAYE.
* yapf: —/> Python SRS AL TR .
o isort: —ANX} import FEFTHEF 1) Python T.H .
* markdownlint: —/~X} markdown SCAR#EF AR kG A SH R T H .

* docformatter: —~~ docstring #$z040 T H. .

111

https://www.python.org/dev/peps/pep-0008/
http://flake8.pycqa.org/en/latest/
https://github.com/google/yapf
https://github.com/timothycrosley/isort
https://github.com/markdownlint/markdownlint
https://github.com/myint/docformatter

MMSelfSup, Release 0.9.0

yapf #ll isort AA% LS BT setup.cfg
FAIfE) pre-commit hook SRARUERF IR AN H SdtAT (g A A%k, FHIIEE(TE flakes, yapf,

isort,trailing whitespaces,markdown files,/4% end-of-files,double-quoted-strings,

python-encoding-pragma, mixed-line-ending, %} requirments.txt HJHEF% . pre-commit hook
(L B ST . pre-commit-config

TEVRERE OIS, VRTEEA% BN T P PR G H) 4R 1L pre-commit hook.,

pip install -U pre-commit

FEQ ORI P IR AT

pre-commit install

UNRARAE 222 markdownlin fRYBEIE 2 FIRE, 3522 13% DA T 2P BRZ2%€ ruby

RZ¥E rvm
curl -L https://get.rvm.io | bash -s -- --autolibs=read-fail
[[-s "SHOME/.rvm/scripts/rvm"]] && source "SHOME/.rvm/scripts/rvm"

rvm autolibs disable

%% ruby

rvm install 2.7.1

HES M 2O HHRBIET AT 2zzruby . sh
WG, BREEAS, AR AR = A TR AT .

TERIHE PR 2T, WERERRIAARS S TS HER 2, 2 T yapf igtg 1.
26.2.2 C++ 1 CUDA

FeA T BB Google C++ Style Guide

112 Chapter 26. & 57k OpenMMLab

https://pre-commit.com/
https://github.com/innerlee/setup
https://github.com/innerlee/setup/blob/master/zzruby.sh
https://google.github.io/styleguide/cppguide.html

CHAPTER

TWENTYSEVEN

27.1 MMSelfSup

27.1.1 v0.9.0 (29/04/2022)

=1
W

it

« % CAE (#284)

* 5 Barlow Twins (#207)

EIEER L

o ¥H CAE (#284)
o 4% Barlow twins (#207)
o 3 SimMIM 192 Fiiill 45 f 224 fRr 45 R (#280)

o 31 MAE fpl6 Fiii)l| 2515 & (#271)

Bug 2%

s BESHRE (#290)

* 7E MAE [0 & P& 24 imgs_per_gpu *Aj samples_per_gpu (#278)
» {ii] prefetch dataloader FifiE4 GPU PNFE4E 1 (#277)

o« BEAETEN B ST IR A R I (#273)

E#HH

10N

113

https://github.com/open-mmlab/mmselfsup/pull/284
https://github.com/open-mmlab/mmselfsup/pull/207
https://github.com/open-mmlab/mmselfsup/pull/284
https://github.com/open-mmlab/mmselfsup/pull/207
https://github.com/open-mmlab/mmselfsup/pull/280
https://github.com/open-mmlab/mmselfsup/pull/271
https://github.com/open-mmlab/mmselfsup/pull/290
https://github.com/open-mmlab/mmselfsup/pull/278
https://github.com/open-mmlab/mmselfsup/pull/277
https://github.com/open-mmlab/mmselfsup/pull/273

MMSelfSup, Release 0.9.0

Bt
* T SimCLR BAUHIZER (#295)
o ML TR (#291)
* %P pytorch 1.5 i (#288)
o EAAL MEPEARBCE SO (#281)
* A api H{IMERTCINL (#276)

X

o TERCZ SN SimMIM HB I HERE (#272)

27.1.2 v0.8.0 (31/03/2022)

=1
W

s

o Y SImMIM (#239)
o 38 KNN B AEI, S3E] checkpoint FIHEHH) backbone A H A TITEAY (#243)

o 4% ImageNet-21k i Pa4E (#225)

T

o 7 SImMIM (#239)
o 3G KNN EEM L, SR i) checkpoint FI42 U backbone KU HEATIEAL (#243)
o 7% ImageNet-21k $JREE (#225)

o 35 HBh4kEE checkpoint SCPFIIZR (#245)

Bug 18

o 473K sampler F¥E IR (#250)
» 184 dist_test_svm_epoch.sh F S50 &[] 81 (#260)

» 8% prepare_voc07_cls.sh W1 mkdir JE{E4S 1R (#261)

114 Chapter 27. EHBE

https://github.com/open-mmlab/mmselfsup/pull/295
https://github.com/open-mmlab/mmselfsup/pull/291
https://github.com/open-mmlab/mmselfsup/pull/288
https://github.com/open-mmlab/mmselfsup/pull/281
https://github.com/open-mmlab/mmselfsup/pull/276
https://github.com/open-mmlab/mmselfsup/pull/272
https://github.com/open-mmlab/mmselfsup/pull/239
https://github.com/open-mmlab/mmselfsup/pull/243
https://github.com/open-mmlab/mmselfsup/pull/225
https://github.com/open-mmlab/mmselfsup/pull/239
https://github.com/open-mmlab/mmselfsup/pull/243
https://github.com/open-mmlab/mmselfsup/pull/225
https://github.com/open-mmlab/mmselfsup/pull/245
https://github.com/open-mmlab/mmselfsup/pull/250
https://github.com/open-mmlab/mmselfsup/pull/260
https://github.com/open-mmlab/mmselfsup/pull/261

MMSelfSup, Release 0.9.0

B ik
o B TS (#253)

X

» {&52 6_benchmarks.md a4 SCHY (#263)

o FH1% 6_benchmarks.md F| 71 3¢ (#262)

27.1.3 v0.7.0 (03/03/2022)

=1
W

i

* SZFF MAE ¥k (#221)

* 341 Places205 "fFREAEN (#210)

o 1£ CI TAER ¥ i Windows iz (#215)
s

* SZFF MAE Bk (#221)

o BN Places205 R {EEMEN K (#210)
Bug 188

o B BLE S R 5% (#200)

® W

&
Pl

t-sne ‘noinit_cfg’ AR (#222)

ik

o MBS S imgs_per_gpu, M samples_per_gpu (#204)

* HH MMCV 1223 755X (#208)

o NEYE readme FIACHE AN pre-commit)T (#213)

* 1E CL AR IR Windows 1 (#215)

=
o ABS G SR GE T8 7] BT AH 245 5 (#210)
o BIZAEAEN prefetch 5, 34> dataset % HAg AR VEHCHY)80 (#218)

27.1. MMSelfSup

115

https://github.com/open-mmlab/mmselfsup/pull/253
https://github.com/open-mmlab/mmselfsup/pull/263
https://github.com/open-mmlab/mmselfsup/pull/262
https://github.com/open-mmlab/mmselfsup/pull/221
https://github.com/open-mmlab/mmselfsup/pull/210
https://github.com/open-mmlab/mmselfsup/pull/215
https://github.com/open-mmlab/mmselfsup/pull/221
https://github.com/open-mmlab/mmselfsup/pull/210
https://github.com/open-mmlab/mmselfsup/pull/200
https://github.com/open-mmlab/mmselfsup/pull/210
https://github.com/open-mmlab/mmselfsup/pull/218
https://github.com/open-mmlab/mmselfsup/pull/222
https://github.com/open-mmlab/mmselfsup/pull/204
https://github.com/open-mmlab/mmselfsup/pull/208
https://github.com/open-mmlab/mmselfsup/pull/213
https://github.com/open-mmlab/mmselfsup/pull/215

MMSelfSup, Release 0.9.0

X
* % O_config.md FHiFAEH SC (#216)

* BB 3250 OpenMMLab i H Fll /147 (#219)

27.1.4 v0.6.0 (02/02/2022)
o T HET vision transformer 1] MoCo v3 (#194)
o TSI ZRAN S S E] #181)
o SZHF cpu |25 (#188)

EbEd
o FJFHE T vision transformer 4] MoCo v3 (#194)
o SCHF cpu |25 (#188)

Bug 28

o BRI (#159, #160) FPE2EIIH] 5 bugs (#161)

* {85 RandomAppliedTrans Hifd:) prob WHE (#173)

» 5% k-means losses {7~ 1) bug (#182)
« B AR Z gpu YR/ B bug (#189)
o BEIMEK cifar ZEHERT) bug (#191)

» 8% dataset.evaluate [Z4] bug (#192)

it
* BUHZHIAE CL R SEIMIIZAT (#145)
o $f5E MIM JIBE (#152)
o B E Sk CT (#154)
o YEMEE eval EALZSIHAR TN drop_last HEIH (#158)
o FEXT “python setup.py test” FY S H (#174)

o IEVNGRRIE S E (#181)

116

Chapter 27. E A%

https://github.com/open-mmlab/mmselfsup/pull/216
https://github.com/open-mmlab/mmselfsup/pull/219
https://github.com/open-mmlab/mmselfsup/pull/194
https://github.com/open-mmlab/mmselfsup/pull/181
https://github.com/open-mmlab/mmselfsup/pull/188
https://github.com/open-mmlab/mmselfsup/pull/194
https://github.com/open-mmlab/mmselfsup/pull/188
https://github.com/open-mmlab/mmselfsup/issues/159
https://github.com/open-mmlab/mmselfsup/issues/160
https://github.com/open-mmlab/mmselfsup/pull/161
https://github.com/open-mmlab/mmselfsup/pull/173
https://github.com/open-mmlab/mmselfsup/pull/182
https://github.com/open-mmlab/mmselfsup/pull/189
https://github.com/open-mmlab/mmselfsup/pull/191
https://github.com/open-mmlab/mmselfsup/pull/192
https://github.com/open-mmlab/mmselfsup/pull/145
https://github.com/open-mmlab/mmselfsup/pull/152
https://github.com/open-mmlab/mmselfsup/pull/154
https://github.com/open-mmlab/mmselfsup/pull/158
https://github.com/open-mmlab/mmselfsup/pull/174
https://github.com/open-mmlab/mmselfsup/pull/181

MMSelfSup, Release 0.9.0

e JI isort F| 5.10.1 (#184)

XH

o EMSORTH SRE5H (#146)

* &% readthedocs (#148, #149, #153)

o BR LSRRI PF SRR (#155, #180, #195)

o SO B ISR H SR ENA SR (#157, #165, #195)

o TEFTERAY SCRYFF BRI P S0 (#163, #164, #165, #166, #167, #168, #169, #172, #176, #178, #179)

* HHHIL README Bi% s (#177)

27.1.5 v0.5.0 (16/12/2021)

=1
W

st

o (U E Y J5 K

o U3 AN A BT RIA

* 37 MMDet Fl MMSeg [EEHEN I o
o NI4T SORY .

L0

© A TURBARE S T

« GEEUHIR MMCV , 5 B IH U 2R .
* 4k MMCYV BaseModule.

o Pofk HSRE .

o Hrd T ECE S

i

o N SWAV. SimSiam. DenseCL 3%,
« 5NN t-SNE u[¥4k T H .

* SZFF MMCV KA fpl6.

27.1. MMSelfSup 117

https://github.com/open-mmlab/mmselfsup/pull/184
https://github.com/open-mmlab/mmselfsup/pull/146
https://github.com/open-mmlab/mmselfsup/pull/148
https://github.com/open-mmlab/mmselfsup/pull/149
https://github.com/open-mmlab/mmselfsup/pull/153
https://github.com/open-mmlab/mmselfsup/pull/155
https://github.com/open-mmlab/mmselfsup/pull/180
https://github.com/open-mmlab/mmselfsup/pull/195
https://github.com/open-mmlab/mmselfsup/pull/157
https://github.com/open-mmlab/mmselfsup/pull/165
https://github.com/open-mmlab/mmselfsup/pull/195
https://github.com/open-mmlab/mmselfsup/pull/163
https://github.com/open-mmlab/mmselfsup/pull/164
https://github.com/open-mmlab/mmselfsup/pull/165
https://github.com/open-mmlab/mmselfsup/pull/166
https://github.com/open-mmlab/mmselfsup/pull/167
https://github.com/open-mmlab/mmselfsup/pull/168
https://github.com/open-mmlab/mmselfsup/pull/169
https://github.com/open-mmlab/mmselfsup/pull/172
https://github.com/open-mmlab/mmselfsup/pull/176
https://github.com/open-mmlab/mmselfsup/pull/178
https://github.com/open-mmlab/mmselfsup/pull/179
https://github.com/open-mmlab/mmselfsup/pull/177

MMSelfSup, Release 0.9.0

-3
o WREMEMAEIR, R IAE .
o SCRFRIFTSS il — 2o ik .

 f#i] MIM J5 3/ MMDet 1 MMSeg 1|4

X#

« H 4 README, getting_started. install, model_zoo (Y.
o ININEHREE £ SO
o UNINATH AR .

27.2 OpenSelfSup (F58)

27.2.1 v0.3.0 (14/10/2020)

=1
W

it

o SCRHRER .
o Mt GaussianBlur 531|253 B A%
o T HUEN SR

Bug 128

* 185 moco v2 1Y bugs, BAELRATE .

» 5% byol H1[}] bugs.

T

o IREREIZ.
o it GaussianBlur fiff MoCo V2. SImCLR. BYOL {4l 238 5 A o

o WRZRUENALE R, 45 Places. VOC. COCO,

118 Chapter 27. EHBE

MMSelfSup, Release 0.9.0

27.2.2 v0.2.0 (26/6/2020)

=]
W

s

* ¥ ¥ BYOL,

¢ SCRREEE BRI

Bug 128

&% publish_model.py IS FS id.

RS

« %#5 BYOL.

o ARSI A AN R U1 A s A 3

o TR MB AL VED R . benchmarks/dist_train_semi.sh,

o PR3 BLEN U S A B SO A% 8l E) configs/benchmarks/

o PRBCELMENNASE R B .

o SRR LR IE AR M 4% .

o W HEH A Nesterov [LARS L 4k5% .

* 3§ SImCLR 1 BYOL M LARS 3 SRR 3 58 HE R S 800 75K

27.2. OpenSelfSup (F58) 119

MMSelfSup, Release 0.9.0

120 Chapter 27. EHBE

CHAPTER

TWENTYEIGHT

ENGLISH

121

MMSelfSup, Release 0.9.0

122 Chapter 28. English

CHAPTER

TWENTYNINE

[)%.3 28"

123

MMSelfSup, Release 0.9.0

124 Chapter 29. Ej{&h3L

CHAPTER

THIRTY

MMSELFSUP.APIS

mmselfsup.apis.init_random_seed (seed=None, device="cuda')

Initialize random seed.

If the seed is not set, the seed will be automatically randomized, and then broadcast to all processes to prevent
some potential bugs. :param seed: The seed. Default to None. :type seed: int, Optional :param device: The device

where the seed will be put on.

Default to ‘cuda’ .

Returns Seed to be used.
Return type int
mmselfsup.apis.set_random_seed (seed, deterministic=False)
Set random seed.
Parameters
e seed (int) —Seed to be used.

* deterministic (bool) —Whether to set the deterministic option for CUDNN backend,
i.e., set forch.backends.cudnn.deterministic to True and torch.backends.cudnn.benchmark to

False. Defaults to False.

125

MMSelfSup, Release 0.9.0

126 Chapter 30. mmselfsup.apis

CHAPTER

THIRTYONE

31.1 hooks

MMSELFSUP.CORE

class mmselfsup.core.hooks.DeepClusterHook (extractor, clustering, unif_sampling, reweight,

reweight_pow, init_memory=False, initial=True,

interval=1, dist_mode=True, data_loaders=None)

Hook for DeepCluster.

This hook includes the global clustering process in DC.

Parameters

extractor (dict) —Config dict for feature extraction.

clustering (dict) —Config dict that specifies the clustering algorithm.
unif_ sampling (bool)—Whether to apply uniform sampling.
reweight (bool) —~Whether to apply loss re-weighting.
reweight_pow (f1oat) -The power of re-weighting.

init_memory (bool) ~Whether to initialize memory banks used in ODC. Defaults to
False.

initial (bool) —Whether to call the hook initially. Defaults to True.
interval (int) —Frequency of epochs to call the hook. Defaults to 1.
dist_mode (bool) —Use distributed training or not. Defaults to True.

data_loaders (DataLoader) —A PyTorch dataloader. Defaults to None.

class mmselfsup.core.hooks.DenseCLHook (start_iters=1000, **kwargs)
Hook for DenseCL.

This hook includes 1oss_1lambda warmup in DenseCL. Borrowed from the authors’ code: https://github.com/
WXinlong/DenseCL.

127

https://github.com/WXinlong/DenseCL
https://github.com/WXinlong/DenseCL

MMSelfSup, Release 0.9.0

Parameters start_iters (int, optional) —The number of warmup iterations to set
loss_lambda=0. Defaults to 1000.

class mmselfsup.core.hooks.DistOptimizerHook (update_interval=1, grad_clip=None,
coalesce=True, bucket_size_mb=- 1,

frozen_layers_cfg={})
Optimizer hook for distributed training.

This hook can accumulate gradients every n intervals and freeze some layers for some iters at the beginning.
Parameters

* update_interval (int, optional)-The update interval of the weights, set > 1 to

accumulate the grad. Defaults to 1.

* grad_clip(dict, optional)-Dict to config the value of grad clip. E.g., grad_clip =

dict(max_norm=10). Defaults to None.

* coalesce (bool, optional)—-Whether allreduce parameters as a whole. Defaults to

True.
* bucket_size_mb (int, optional)-Size of bucket, the unit is MB. Defaults to -1.

* frozen_layers_cfg(dict, optional)-Dictto configfrozen layers. The key-value
pair is layer name and its frozen iters. If frozen, the layer gradient would be set to None.
Defaults to dict().

class mmselfsup.core.hooks.GradAccumFpl60ptimizerHook (update_interval=1,
frozen_layers_cfg={}, **kwargs)
Fp16 optimizer hook (using PyTorch’ s implementation).

This hook can accumulate gradients every n intervals and freeze some layers for some iters at the beginning. If you

are using PyTorch >= 1.6, torch.cuda.amp is used as the backend, to take care of the optimization procedure.
Parameters

* update_interval (int, optional)-The update interval of the weights, set > 1 to

accumulate the grad. Defaults to 1.

* frozen_layers_cfg(dict, optional)-Dictto configfrozen layers. The key-value
pair is layer name and its frozen iters. If frozen, the layer gradient would be set to None.
Defaults to dict().

after_train_iter (runner)
Backward optimization steps for Mixed Precision Training. For dynamic loss scaling, please refer to https:

/Ipytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler.
1. Scale the loss by a scale factor.
2. Backward the loss to obtain the gradients.

3. Unscale the optimizer’ s gradient tensors.

128 Chapter 31. mmselfsup.core

https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler

MMSelfSup, Release 0.9.0

4. Call optimizer.step() and update scale factor.
5. Save loss_scaler state_dict for resume purpose.

class mmselfsup.core.hooks.MomentumUpdateHook (end_momentum=1.0, update_interval=1,
*Elwargs)

Hook for updating momentum parameter, used by BYOL, MoCoV3, etc.

This hook includes momentum adjustment following:
m=1—(1—mg)* (cos(pi*k/K)+1)/2

where £k is the current step, K is the total steps.
Parameters

* end_momentum (f1oat)—-The final momentum coefficient for the target network. Defaults
to 1.

* update_interval (int, optional)-The momentum update interval of the weights.

Defaults to 1.

class mmselfsup.core.hooks.ODCHook (centroids_update_interval, deal_with_small_clusters_interval,
evaluate_interval, reweight, reweight_pow, dist_mode=True)
Hook for ODC.

This hook includes the online clustering process in ODC.
Parameters
* centroids_update_interval (int) -Frequency of iterations to update centroids.

* deal_with_small_clusters_interval (int) —Frequency of iterations to deal

with small clusters.
* evaluate_interval (int) -Frequency of iterations to evaluate clusters.
* reweight (bool) -Whether to perform loss re-weighting.
* reweight_pow (f1oat) —The power of re-weighting.
* dist_mode (bool) -Use distributed training or not. Defaults to True.

class mmselfsup.core.hooks.SimSiamHook (fix_pred_lr, Ir, adjust_by_epoch=True, **kwargs)

Hook for SimSiam.
This hook is for SimSiam to fix learning rate of predictor.
Parameters
» fix pred_1r (bool)—whether to fix the Ir of predictor or not.

e 1r (float) —the value of fixed Ir.

31.1. hooks 129

MMSelfSup, Release 0.9.0

* adjust_by_epoch (bool, optional)-whether to setlr by epoch or iter. Defaults to
True.

before_train_epoch (runner)

fix Ir of predictor.

class mmselfsup.core.hooks.StepFixCosineAnnealingLrUpdaterHook (min_Ir=None,
min_Ir_ratio=None,

**kwargs)

class mmselfsup.core.hooks.SwAVHook (batch_size, epoch_queue_starts=15, crops_for_assign=[0, 1],
feat_dim=128, queue_length=0, interval=1, **kwargs)
Hook for SWAV.

This hook builds the queue in SWAV according to epoch_queue_starts. The queue will be saved in run—

ner.work_dir or loaded at start epoch if the path folder has queues saved before.
Parameters
* batch_size (int) —the batch size per GPU for computing.

* epoch_queue_starts (int, optional) —from this epoch, starts to use the queue.
Defaults to 15.

* crops_for_assign (list[int], optional) -listof crops id used for computing

assignments. Defaults to [0, 1].
e feat_dim (int, optional)—feature dimension of output vector. Defaults to 128.
* queue_length (int, optional)-length of the queue (0 for no queue). Defaults to O.

* interval (int, optional) -the interval to save the queue. Defaults to 1.

31.2 optimizer

class mmselfsup.core.optimizer.DefaultOptimizerConstructor (optimizer_cfg,
paramwise_cfg=None)
Rewrote default constructor for optimizers. By default each parameter share the same optimizer settings, and
we provide an argument paramwise_cfg to specify parameter-wise settings. It is a dict and may contain the
following fields: :param model: The model with parameters to be optimized. :type model: nn .Module :param

optimizer_cfg: The config dict of the optimizer.
Positional fields are
* type: class name of the optimizer.
Optional fields are

* any arguments of the corresponding optimizer type, e.g., Ir, weight_decay, momentum, etc.

130 Chapter 31. mmselfsup.core

MMSelfSup, Release 0.9.0

Parameters paramwise_cfg (dict, optional)-Parameter-wise options. Defaults to None.

Example 1:

>>> model = torch.nn.modules.Convild (1, 1, 1)

>>> optimizer_cfg = dict (type='SGD', 1lr=0.01, momentum=0.9,

>>> weight_decay=0.0001)

>>> paramwise_cfg = dict('bias': dict (weight_decay=0., .
[lars_exclude=True))

>>> optim_builder = DefaultOptimizerConstructor (

>>> optimizer_cfg, paramwise_cfg)

>>> optimizer = optim_builder (model)

class mmselfsup.core.optimizer.LARS (params, Ir=<required parameter>, momentum=0,
weight_decay=0, dampening=0, eta=0.001, nesterov=Fualse,
eps=1e-08)

Implements layer-wise adaptive rate scaling for SGD.
Parameters
* params (iterable)-Iterable of parameters to optimize or dicts defining parameter groups.
e 1r (float)—Base learning rate.
e momentum (float, optional)-Momentum factor. Defaultsto O (‘m’)

* weight_decay (float, optional) —Weight decay (L2 penalty). Defaults to 0. (
‘beta’)

* dampening (float, optional)-Dampening for momentum. Defaults to O.

* eta(float, optional)—-LARS coefficient. Defaults to 0.001.

* nesterov (bool, optional)—Enables Nesterov momentum. Defaults to False.
* eps (float, optional)—A small number to avoid dviding zero. Defaults to 1e-8.

Based on Algorithm 1 of the following paper by You, Gitman, and Ginsburg. “Large Batch Training of Convolu-

tional Networks:

<https://arxiv.org/abs/1708.03888>"_.

31.2. optimizer 131

https://arxiv.org/abs/1708.03888

MMSelfSup, Release 0.9.0

Example
>>> optimizer = LARS (model.parameters (), lr=0.1, momentum=0.9,
>>> weight_decay=le-4, eta=le-3)

>>> optimizer.zero_grad()
>>> loss_fn(model (input), target) .backward()

>>> optimizer.step ()

step (closure=None)

Performs a single optimization step.

Parameters closure (callable, optional)—A closure that reevaluates the model and

returns the loss.

class mmselfsup.core.optimizer.TransformerFinetuneConstructor (opfimizer_cfg,

paramwise_cfg=None)

Rewrote default constructor for optimizers.

By default each parameter share the same optimizer settings, and we provide an argument paramwise_cfg
to specify parameter-wise settings. In addition, we provide two optional parameters, model_type and
layer_decay to set the commonly used layer-wise learning rate decay schedule. Currently, we only support

layer-wise learning rate schedule for swin and vit.
Parameters
* optimizer_cfg (dict) —The config dict of the optimizer. Positional fields are

— type: class name of the optimizer.

Optional fields are

— any arguments of the corresponding optimizer type, e.g., Ir, weight_decay, momentum,

model_type, layer_decay, etc.
* paramwise_cfg(dict, optional)-Parameter-wise options. Defaults to None.

Example 1:

>>> model = torch.nn.modules.Convilid(1l, 1, 1)

>>> optimizer_cfg = dict (type='SGD', 1lr=0.01, momentum=0.9,

>>> weight_decay=0.0001, model_type='vit"')

>>> paramwise_cfg = dict('bias': dict (weight_decay=0., -
AN lars_exclude=True))

>>> optim_builder = TransformerFinetuneConstructor (

>>> optimizer_cfg, paramwise_cfg)

>>> optimizer = optim_builder (model)

132

Chapter 31. mmselfsup.core

MMSelfSup, Release 0.9.0

mmselfsup.core.optimizer.build_optimizer (model, optimizer_cfg)

Build optimizer from configs.
Parameters
* model (nn.Module)—The model with parameters to be optimized.
* optimizer_cfg (dict) —The config dict of the optimizer. Positional fields are:
— type: class name of the optimizer.

— Ir: base learning rate.

Optional fields are:
— any arguments of the corresponding optimizer type, e.g., weight_decay, momentum, etc.

— paramwise_options: a dict with regular expression as keys to match parameter names
and a dict containing options as values. Options include 6 fields: Ir, Ir_mult, momentum,

momentum_mult, weight_decay, weight_decay_mult.

Returns The initialized optimizer.

Return type torch.optim.Optimizer

Example

>>> model = torch.nn.modules.Convlid(l, 1, 1)

>>> paramwise_options = {
>>> "(bn|gn) (\d+) ?. (weight |bias)': dict (weight_decay_mult=0.1),
>>> '"\Ahead.': dict (lr_mult=10, momentum=0) }

>>> optimizer_cfg = dict (type='SGD', 1lr=0.01, momentum=0.9,

>>> weight_decay=0.0001,
>>> paramwise_options=paramwise_options)
>>> optimizer = build_optimizer (model, optimizer_cfg)

31.2. optimizer 133

MMSelfSup, Release 0.9.0

134 Chapter 31. mmselfsup.core

CHAPTER

THIRTYTWO

MMSELFSUP.DATASETS

32.1 data_sources

class mmselfsup.datasets.data_sources.BaseDataSource (data_prefix, classes=None,
ann_file=None, test_mode=False,
color_type='color',
channel_order="rgb’,
file_client_args={"backend': 'disk'})

Datasource base class to load dataset information.
Parameters
* data_prefix (str) —the prefix of data path.
* classes (str | Sequence[str], optional)-Specify classes to load.

* ann_file(str | None)-the annotation file. When ann_file is str, the subclass is expected
to read from the ann_file. When ann_file is None, the subclass is expected to read according

to data_prefix.
* test_mode (bool) —in train mode or test mode. Defaults to False.
* color_type (str)-The flag argument for mmcv.imfrombytes (). Defaults to color.
* channel_order (str)-The channel order of images when loaded. Defaults to rgb.

» file_client_args (dict) —Arguments to instantiate a FileClient. See mmcv.
fileio.FileClient for details. Defaults to dict(backend=" disk’).

get_cat_ids (idx)
Get category id by index.

Parameters idx (int) —Index of data.
Returns Image category of specified index.

Return type int

135

MMSelfSup, Release 0.9.0

classmethod get_classes (classes=None)

Get class names of current dataset.

Parameters classes (Sequence[str] | str | None)—If classes is None, use default
CLASSES defined by builtin dataset. If classes is a string, take it as a file name. The file
contains the name of classes where each line contains one class name. If classes is a tuple or
list, override the CLASSES defined by the dataset.

Returns Names of categories of the dataset.
Return type tuple[str] or list[str]

get_gt_labels ()
Get all ground-truth labels (categories).

Returns categories for all images.
Return type list[int]

get_img (idx)
Get image by index.

Parameters idx (int) —Index of data.
Returns PIL Image format.
Return type Image

class mmselfsup.datasets.data_sources.CIFAR1O (data_prefix, classes=None, ann_file=None,
test_mode=False, color_type='color’,
channel_order="rgb’, file_client_args={'backend':
disk'})
CIFAR10 Dataset.

This implementation is modified from https://github.com/pytorch/vision/blob/master/torchvision/datasets/cifar.
py
class mmselfsup.datasets.data_sources.CIFAR100 (data_prefix, classes=None, ann_file=None,
test_mode=False, color_type='color',
channel_order="rgb’,
file_client_args={"backend': 'disk'})
CIFAR100 Dataset.

class mmselfsup.datasets.data_sources.ImageList (data_prefix, classes=None, ann_file=None,
test_mode=False, color_type='color',
channel_order="rgb’,
file_client_args={"backend': 'disk'})

The implementation for loading any image list file.

The ImageList can load an annotation file or a list of files and merge all data records to one list. If data is unlabeled,

the gt_label will be set -1.

136 Chapter 32. mmselfsup.datasets

https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/pytorch/vision/blob/master/torchvision/datasets/cifar.py
https://github.com/pytorch/vision/blob/master/torchvision/datasets/cifar.py
https://www.cs.toronto.edu/~kriz/cifar.html

MMSelfSup, Release 0.9.0

class mmselfsup.datasets.data_sources.ImageNet (data_prefix, classes=None, ann_file=None,
test_mode=False, color_type='color',
channel_order="rgb’,
file_client_args={"backend': 'disk'})
ImageNet Dataset.

This implementation is modified from https://github.com/pytorch/vision/blob/master/torchvision/datasets/

imagenet.py

class mmselfsup.datasets.data_sources.ImageNet21k (data_prefix, classes=None, ann_file=None,
multi_label=Fualse, recursion_subdir=False,
test_mode=Fualse)
ImageNet21k Dataset. Since the dataset ImageNet21k is extremely big, cantains 21k+ classes and 1.4B files. This
class has improved the following points on the basis of the class ImageNet, in order to save memory usage and

time required :
* Delete the samples attribute
e using ‘slots’ create a Data_item tp replace dict
* Modify setting info dict from function load_annotations to function prepare_data

* using int instead of np.array(---, np.int64)

Parameters
* data_prefix (str) —the prefix of data path

* ann_file(str | None)-the annotation file. When ann_file is str, the subclass is expected
to read from the ann_file. When ann_file is None, the subclass is expected to read according

to data_prefix
* test_mode (bool) —in train mode or test mode
e multi_label (bool)—use multi label or not.
* recursion_subdir (bool) -whether to use sub-directory pictures, which are meet the

conditions in the folder under category directory.

load_annotations ()

load dataset annotations.

32.1. data_sources 137

http://www.image-net.org
https://github.com/pytorch/vision/blob/master/torchvision/datasets/imagenet.py
https://github.com/pytorch/vision/blob/master/torchvision/datasets/imagenet.py

MMSelfSup, Release 0.9.0

32.2 pipelines

class mmselfsup.datasets.pipelines.BEiTMaskGenerator (input_size: int, num_masking_patches:
int, min_num_patches: int = 4,
max_num_patches: Optional[int] =
None, min_aspect: float = 0.3,
max_aspect: Optional[float] = None)

Generate mask for image.
This module is borrowed from https://github.com/microsoft/unilm/tree/master/beit
Parameters
e input_size (int)—The size of input image.
* num_masking_patches (int) -The number of patches to be masked.

* min_num_patches (int) -The minimum number of patches to be masked in the process

of generating mask. Defaults to 4.

* max_num_patches (int, optional)-The maximum number of patches to be masked

in the process of generating mask. Defaults to None.

* min_aspect (float, optional)-The minimum aspect ratio of mask blocks. Defaults
to 0.3.

* min_aspect —The minimum aspect ratio of mask blocks. Defaults to None.

class mmselfsup.datasets.pipelines.GaussianBlur (sigma_min, sigma_max, p=0.5)

GaussianBlur augmentation refers to “SimCLR.
<https://arxiv.org/abs/2002.05709>"_.
Parameters
* sigma_min (f1oat)-The minimum parameter of Gaussian kernel std.
* sigma_max (f1oat)-The maximum parameter of Gaussian kernel std.
* p(float, optional)-Probability. Defaults to 0.5.

class mmselfsup.datasets.pipelines.Lighting (alphastd=0.1)
Lighting noise(AlexNet - style PCA - based noise).

Parameters alphastd (float, optional)-The parameter for Lighting. Defaults to 0.1.

class mmselfsup.datasets.pipelines.RandomAppliedTrans (transforms, p=0.5)

Randomly applied transformations.
Parameters

e transforms (1ist [dict])—List of transformations in dictionaries.

138 Chapter 32. mmselfsup.datasets

https://github.com/microsoft/unilm/tree/master/beit
https://arxiv.org/abs/2002.05709

MMSelfSup, Release 0.9.0

* p(float, optional)-Probability. Defaults to 0.5.

class mmselfsup.datasets.pipelines.RandomAug (input_size=None, color_jitter=None,
auto_augment=None, interpolation=None,
re_prob=None, re_mode=None, re_count=None,
mean=None, std=None)
RandAugment data augmentation method based on “RandAugment: Practical automated data augmentation with

a reduced search space” .
This code is borrowed from <https://github.com/pengzhiliang/MAE-pytorch>

class mmselfsup.datasets.pipelines.SimMIMMaskGenerator (input_size: int = 192,
mask_patch_size: int = 32,
model_patch_size: int = 4,
mask_ratio: float = 0.6)

Generate random block mask for each Image.
This module is used in SimMIM to generate masks.
Parameters
* input_size (int) —Size of input image. Defaults to 192.
* mask_patch_size (int) —Size of each block mask. Defaults to 32.
* model_patch_size (int) —Patch size of each token. Defaults to 4.
* mask_ratio (float)-The mask ratio of image. Defaults to 0.6.

class mmselfsup.datasets.pipelines.Solarization (threshold=128, p=0.5)

Solarization augmentation refers to "BYOL.
<https://arxiv.org/abs/2006.07733>"_.
Parameters
e threshold (float, optional)—The solarization threshold. Defaults to 128.
* p(float, optional)-Probability. Defaults to 0.5.

class mmselfsup.datasets.pipelines.ToTensor

Convert image or a sequence of images to tensor.

This module can not only convert a single image to tensor, but also a sequence of images.

32.2. pipelines 139

https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1909.13719
https://github.com/pengzhiliang/MAE-pytorch
https://arxiv.org/abs/2006.07733

MMSelfSup, Release 0.9.0

32.3 samplers

class mmselfsup.datasets.samplers.DistributedGivenIterationSampler (dataset,
total_iter,
batch_size,
num_replicas=None,
rank=None,

last_iter=- 1)

gen_new_list ()

Each process shuffle all list with same seed, and pick one piece according to rank.

class mmselfsup.datasets.samplers.DistributedGroupSampler (dataset, samples_per_gpu=1,
num_replicas=None,
rank=None)

Sampler that restricts data loading to a subset of the dataset.

It is especially useful in conjunction with torch.nn.parallel.DistributedDataParallel. In such
case, each process can pass a DistributedSampler instance as a DatalLoader sampler, and load a subset of the original

dataset that is exclusive to it.

Note: Dataset is assumed to be of constant size.

Parameters
* dataset —Dataset used for sampling.
* num_replicas (optional)-Number of processes participating in distributed training.
* rank (optional)—Rank of the current process within num_replicas.
class mmselfsup.datasets.samplers.DistributedSampler (dataset, num_replicas=None,

rank=None, shuffle=True,

replace=False, seed=0)

class mmselfsup.datasets.samplers.GroupSampler (dataset, samples_per_gpu=1)

140 Chapter 32. mmselfsup.datasets

MMSelfSup, Release 0.9.0

32.4 datasets

class mmselfsup.datasets.BaseDataset (data_source, pipeline, prefetch=False)

Base dataset class.

The base dataset can be inherited by different algorithm’ s datasets. After __inir__, the data source and pipeline

will be built. Besides, the algorithm specific dataset implements different operations after obtaining images from

data sources.
Parameters
* data_source (dict) —Data source defined in mmselfsup.datasets.data_sources.

* pipeline (1ist [dict])—A listof dict, where each element represents an operation de-

fined in mmselfsup.datasets.pipelines.
» prefetch (bool, optional)—-Whether to prefetch data. Defaults to False.

class mmselfsup.datasets.ConcatDataset (datasets)

A wrapper of concatenated dataset.

Same as torch.utils.data.dataset.ConcatDataset, but concat the group flag for image aspect ra-

tio.
Parameters datasets (listfDataset]) —A list of datasets.

class mmselfsup.datasets.DeepClusterDataset (data_source, pipeline, prefetch=False)
Dataset for DC and ODC.

The dataset initializes clustering labels and assigns it during training.
Parameters
e data_source (dict) —Data source defined in mmselfsup.datasets.data_sources.

* pipeline (1ist [dict])—A list of dict, where each element represents an operation de-

fined in mmselfsup.datasets.pipelines.
» prefetch (bool, optional)-Whether to prefetch data. Defaults to False.

class mmselfsup.datasets.MultiViewDataset (data_source, num_views, pipelines, prefetch=False)

The dataset outputs multiple views of an image.

The number of views in the output dict depends on num_views. The image can be processed by one pipeline or

multiple piepelines.
Parameters
* data_source (dict) —Data source defined in mmselfsup.datasets.data_sources.

e num_views (11ist)—The number of different views.

32.4. datasets 141

MMSelfSup, Release 0.9.0

* pipelines (1ist[list[dict]]) —A list of pipelines, where each pipeline contains

elements that represents an operation defined in mmselfsup.datasets.pipelines.

* prefetch (bool, optional)—-Whether to prefetch data. Defaults to False.

Examples

>>> dataset = MultiViewDataset (data_source, [2], [pipeline])
>>> output = dataset[idx]

The output got 2 views processed by one pipeline.

>>> dataset = MultiViewDataset (

>>> data_source, [2, 6], [pipelinel, pipeline2])

>>> output = dataset[idx]

The output got 8 views processed by two pipelines, the first two views

were processed by pipelinel and the remaining views by pipeline2.

class mmselfsup.datasets.RelativeLocDataset (data_source, pipeline, format_pipeline,
prefetch=False)

Dataset for relative patch location.

The dataset crops image into several patches and concatenates every surrounding patch with center one. Finally it

also outputs corresponding labels 0, 1, 2, 3,4, 5, 6, 7.
Parameters
* data_source (dict) —Data source defined in mmselfsup.datasets.data_sources.

* pipeline (1ist [dict])—A listof dict, where each element represents an operation de-

fined in mmselfsup.datasets.pipelines.

* format_pipeline (list[dict]) —A list of dict, it converts input format from

PIL.Image to Tensor. The operation is defined in mmselfsup.datasets.pipelines.
* prefetch (bool, optional)-Whether to prefetch data. Defaults to False.

class mmselfsup.datasets.RepeatDataset (dataset, times)

A wrapper of repeated dataset.

The length of repeated dataset will be fimes larger than the original dataset. This is useful when the data loading

time is long but the dataset is small. Using RepeatDataset can reduce the data loading time between epochs.
Parameters
* dataset (Dataset) —The dataset to be repeated.
* times (int) —Repeat times.

class mmselfsup.datasets.RotationPredDataset (data_source, pipeline, prefetch=False)

Dataset for rotation prediction.

142 Chapter 32. mmselfsup.datasets

MMSelfSup, Release 0.9.0

The dataset rotates the image with 0, 90, 180, and 270 degrees and outputs labels 0, 1, 2, 3 correspodingly.
Parameters
* data_source (dict) —Data source defined in mmselfsup.datasets.data_sources.

* pipeline (1ist [dict])—A list of dict, where each element represents an operation de-

fined in mmselfsup.datasets.pipelines.
* prefetch (bool, optional)—Whether to prefetch data. Defaults to False.

class mmselfsup.datasets.SingleViewDataset (data_source, pipeline, prefetch=False)

The dataset outputs one view of an image, containing some other information such as label, idx, etc.
Parameters
* data_source (dict)—Data source defined in mmselfsup.datasets.data_sources.

* pipeline (1ist [dict])—A list of dict, where each element represents an operation de-

fined in mmselfsup.datasets.pipelines.
* prefetch (bool, optional)-Whether to prefetch data. Defaults to False.

evaluate (results, logger=None, topk=(1, 5))

The evaluation function to output accuracy.
Parameters

e results (dict) -The key-value pair is the output head name and corresponding predic-

tion values.

* logger (logging.Logger | str | None, optional)-The defined logger to
be used. Defaults to None.

e topk (tuple (int)) —The output includes topk accuracy.

mmselfsup.datasets.build_dataloader (dataset, imgs_per_gpu=None, samples_per_gpu=None,
workers_per_gpu=1, num_gpus=1, dist=True, shuffle=True,
replace=False, seed=None, pin_memory="True,
persistent_workers=True, **kwargs)
Build PyTorch Datal.oader.

In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader

for all GPUs.
Parameters
* dataset (Dataset) —A PyTorch dataset.

* imgs_per_gpu (int) —(Deprecated, please use samples_per_gpu) Number of images on
each GPU, i.e., batch size of each GPU. Defaults to None.

* samples_per_gpu (int)-Number of images on each GPU, i.e., batch size of each GPU.
Defaults to None.

32.4. datasets 143

MMSelfSup, Release 0.9.0

» workers_per_gpu (int) -How many subprocesses to use for data loading for each GPU.

persistent_workers option needs num_workers > 0. Defaults to 1.
* num_gpus (int) -Number of GPUs. Only used in non-distributed training.
* dist (bool) —Distributed training/test or not. Defaults to True.
* shuffle (bool)-Whether to shuffle the data at every epoch. Defaults to True.

* replace (bool) —Replace or not in random shuffle. It works on when shuffle is True.

Defaults to False.
e seed (int) —set seed for dataloader.

* pin_memory (bool, optional)-If True, the dataloader will copy Tensors into CUDA

pinned memory before returning them. Defaults to True.

* persistent_workers (bool) —If True, the data loader will not shutdown the worker
processes after a dataset has been consumed once. This allows to maintain the workers Dataset

instances alive. The argument also has effect in PyTorch>=1.7.0. Defaults to True.
* kwargs —any keyword argument to be used to initialize Dataloader
Returns A PyTorch dataloader.

Return type Datal.oader

144 Chapter 32. mmselfsup.datasets

CHAPTER

THIRTYTHREE

33.1

33.2

33.3

33.4

33.5

33.6

algorithms
backbones
heads
memories
necks

utils

MMSELFSUP.MODELS

145

MMSelfSup, Release 0.9.0

146 Chapter 33. mmselfsup.models

CHAPTER

THIRTYFOUR

MMSELFSUP.UTILS

class mmselfsup.utils.AliasMethod (probs)

The alias method for sampling.
From: https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling- with-many-discrete-outcomes/
Parameters probs (Tensor)-Sampling probabilities.

draw (N)

Draw N samples from multinomial.
Parameters N (int)-Number of samples.
Returns Samples.
Return type Tensor

class mmselfsup.utils.Extractor (dataset, samples_per_gpu, workers_per_gpu, dist_mode=False,
persistent_workers=True, **kwargs)

Feature extractor.
Parameters
* dataset (Dataset | dict)—A PyTorch dataset or dict that indicates the dataset.
* samples_per_gpu (int)—Number of images on each GPU, i.e., batch size of each GPU.
* workers_per_gpu (int) -How many subprocesses to use for data loading for each GPU.
e dist_mode (bool)—Use distributed extraction or not. Defaults to False.

* persistent_workers (bool) —If True, the data loader will not shutdown the worker
processes after a dataset has been consumed once. This allows to maintain the workers Dataset

instances alive. The argument also has effect in PyTorch>=1.7.0. Defaults to True.

mmselfsup.utils.batch_shuffle_ddp (x)
Batch shuffle, for making use of BatchNorm.

* Only support DistributedDataParallel (DDP) model. *

147

https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/

MMSelfSup, Release 0.9.0

mmselfsup.utils.batch_unshuffle_ddp (x, idx_unshuffle)
Undo batch shuffle.

* Only support DistributedDataParallel (DDP) model. *

mmselfsup.utils.collect_env()

Collect the information of the running environments.

mmselfsup.utils.concat_all_gather (fensor)

Performs all_gather operation on the provided tensors.
* Warning *: torch.distributed.all_gather has no gradient.

mmselfsup.utils.dist_forward_collect (func, data_loader, rank, length, ret_rank=- 1)

Forward and collect network outputs in a distributed manner.

This function performs forward propagation and collects outputs. It can be used to collect results, features, losses,

etc.
Parameters

» func (function)-The function to process data. The output must be a dictionary of CPU

tensors.
* data_loader (Dataloader) —the torch Dataloader to yield data.
* rank (int) —This process id.
* length (int) —Expected length of output arrays.
* ret_rank (int) -The process that returns. Other processes will return None.
Returns The concatenated outputs.
Return type results_all (dict(np.ndarray))

mmselfsup.utils.distributed_sinkhorn (out, sinkhorn_iterations, world_size, epsilon)

Apply the distributed sinknorn optimization on the scores matrix to find the assignments.

mmselfsup.utils.find_latest_checkpoint (path, suffix="pth’)
Find the latest checkpoint from the working directory. :param path: The path to find checkpoints. :type path: str

:param suffix: File extension.

Defaults to pth.

Returns File path of the latest checkpoint.

Return type latest_path(str | None)

148 Chapter 34. mmselfsup.utils

MMSelfSup, Release 0.9.0

References
mmselfsup.utils.gather_tensors (input_array)
Gather tensor from all GPUs.

mmselfsup.utils.gather_tensors_batch (input_array, part_size=100, ret_rank=- 1)

batch-wise gathering to avoid CUDA out of memory.

mmselfsup.utils.get_root_logger (log_file=None, log_level=20)
Get root logger.

Parameters

* log_file(str, optional)—File path of log. Defaults to None.

* log_level (int, optional)-The level of logger. Defaults to logging.INFO.
Returns The obtained logger.
Return type logging.Logger

mmselfsup.utils.nondist_forward_collect (func, data_loader, length)

Forward and collect network outputs.

This function performs forward propagation and collects outputs. It can be used to collect results, features, losses,

etc.
Parameters

* func (function) —The function to process data. The output must be a dictionary of CPU

tensors.
* data_loader (Dataloader) —the torch Dataloader to yield data.
* length (int) —Expected length of output arrays.
Returns The concatenated outputs.
Return type results_all (dict(np.ndarray))

mmselfsup.utils.setup_multi_processes (cfg)

Setup multi-processing environment variables.

mmselfsup.utils.sync_random_seed (seed=None, device='cuda')
Make sure different ranks share the same seed. All workers must call this function, otherwise it will deadlock.
This method is generally used in DistributedSampler, because the seed should be identical across all processes in

the distributed group.

In distributed sampling, different ranks should sample non-overlapped data in the dataset. Therefore, this function
is used to make sure that each rank shuffles the data indices in the same order based on the same seed. Then

different ranks could use different indices to select non-overlapped data from the same data list.

Parameters

149

MMSelfSup, Release 0.9.0

e seed (int, Optional)—The seed. Default to None.
* device (str)—The device where the seed will be put on. Default to ‘cuda’ .
Returns Seed to be used.

Return type int

References

150 Chapter 34. mmselfsup.utils

CHAPTER

THIRTYFIVE

INDICES AND TABLES

¢ genindex

e search

151

MMSelfSup, Release 0.9.0

152 Chapter 35. Indices and tables

m

mmsel fsup.
mmsel fsup.
mmsel fsup.
mmselfsup.
mmsel fsup.
mmsel fsup.
mmsel fsup.

mmselfsup.

apis, 125

core.hooks, 127
core.optimizer, 130
datasets, 141
datasets.data_sources, 135
datasets.pipelines, 138
datasets.samplers, 140
utils, 147

PYTHON MODULE INDEX

153

MMSelfSup, Release 0.9.0

154 Python Module Index

A

after_train_iter () (mmself-
sup.core.hooks.GradAccumFpl60ptimizerHook
method), 128

AliasMethod (class in mmselfsup.utils), 147

B

BaseDataset (class in mmselfsup.datasets), 141

BaseDataSource (class in mmself-
sup.datasets.data_sources), 135

batch_shuffle_ddp () (in module mmselfsup.utils),

147

batch_unshuffle_ddp () (in module mmself-
sup.utils), 147

before_train_epoch () (mmself-

sup.core.hooks.SimSiamHook method), 130

BEiTMaskGenerator (class in mmself-
sup.datasets.pipelines), 138

build_dataloader () (in module mmself-
sup.datasets), 143

build_optimizer () (in module mmself-

sup.core.optimizer), 132

C

CIFAR1O (class in mmselfsup.datasets.data_sources), 136

CIFAR100 (class in mmselfsup.datasets.data_sources),
136

collect_env () (in module mmselfsup.utils), 148

concat_all_gather () (in module mmselfsup.utils),
148

ConcatDataset (class in mmselfsup.datasets), 141

INDEX

D

DeepClusterDataset (class in mmselfsup.datasets),
141

DeepClusterHook (class in mmselfsup.core.hooks),
127

DefaultOptimizerConstructor (class in mmself-
sup.core.optimizer), 130

DenseCLHook (class in mmselfsup.core.hooks), 127

dist_forward_collect () (in module mmself-
sup.utils), 148

DistOptimizerHook (class in mmselfsup.core.hooks),
128

distributed_sinkhorn ()

sup.utils), 148

(in module mmself-

DistributedGivenIterationSampler (class in

mmselfsup.datasets.samplers), 140

DistributedGroupSampler (class in mmself-
sup.datasets.samplers), 140
DistributedSampler (class in mmself-

sup.datasets.samplers), 140
draw () (mmselfsup.utils. AliasMethod method), 147

E

evaluate ()
method), 143

Extractor (class in mmselfsup.utils), 147

F

find_latest_checkpoint () (in module mmself-

sup.utils), 148

(mmselfsup.datasets.Single ViewDataset

G

gather_tensors () (in module mmselfsup.utils), 149

155

MMSelfSup, Release 0.9.0

gather_tensors_batch () (in module mmself-
sup.utils), 149

GaussianBlur (class in mmselfsup.datasets.pipelines),
138

gen_new_list () (mmself-

module, 125
mmselfsup.core.hooks

module, 127
mmselfsup.core.optimizer

module, 130

sup.datasets.samplers. DistributedGivenlterationSamplmise 1 f sup . datasets

method), 140
get_cat_ids () (mmself-

sup.datasets.data_sources. BaseDataSource

method), 135
get_classes () (mmself-

sup.datasets.data_sources. BaseDataSource

class method), 135
get_gt_labels () (mmself-
sup.datasets.data_sources. BaseDataSource

method), 136

get_img () (mmselfsup.datasets.data_sources. BaseDataSource mmselfsup.

method), 136

get_root_logger () (in module mmselfsup.utils), 149

GradAccumFpl60ptimizerHook (class in mmself-
sup.core.hooks), 128

GroupSampler (class in mmselfsup.datasets.samplers),
140

ImageList (class in mmselfsup.datasets.data_sources),

136

ImageNet (class in mmselfsup.datasets.data_sources),
136

ImageNet21k (class in mmself-

sup.datasets.data_sources), 137

init_random_seed ()
125

(in module mmselfsup.apis),

L

LARS (class in mmselfsup.core.optimizer), 131

Lighting (class in mmselfsup.datasets.pipelines), 138
load_annotations () (mmself-
sup.datasets.data_sources.ImageNet2 1k method),

137

M

mmselfsup.apis

module, 141
mmselfsup.datasets.data_sources
module, 135
mmselfsup.datasets.pipelines
module, 138
mmselfsup.datasets.samplers
module, 140
mmselfsup.utils
module, 147
module

apis, 125

mmselfsup.core.hooks, 127
mmselfsup.core.optimizer, 130
mmselfsup.datasets, 141
mmselfsup.datasets.data_sources, 135
mmselfsup.datasets.pipelines, 138
mmselfsup.datasets.samplers, 140
mmselfsup.utils, 147
MomentumUpdateHook (class in mmself-

sup.core.hooks), 129

MultiViewDataset (class in mmselfsup.datasets), 141

N

nondist_forward_collect () (in module mmself-

sup.utils), 149

O

ODCHook (class in mmselfsup.core.hooks), 129

R

RandomAppliedTrans (class in mmself-
sup.datasets.pipelines), 138

RandomAug (class in mmselfsup.datasets.pipelines), 139

RelativeLocDataset (class in mmselfsup.datasets),
142

RepeatDataset (class in mmselfsup.datasets), 142

156

Index

MMSelfSup, Release 0.9.0

RotationPredDataset (class in mmselfsup.datasets),
142

S

set_random_seed () (in module mmselfsup.apis), 125

setup_multi_processes () (in module mmself-
sup.utils), 149

SimMIMMaskGenerator (class in mmself-
sup.datasets.pipelines), 139

SimSiamHook (class in mmselfsup.core.hooks), 129

SingleViewDataset (class in mmselfsup.datasets),
143

Solarization (class in mmselfsup.datasets.pipelines),
139

step () (mmselfsup.core.optimizer.LARS method), 132

StepFixCosineAnnealingLrUpdaterHook
(class in mmselfsup.core.hooks), 130

SwAVHook (class in mmselfsup.core.hooks), 130

sync_random_seed () (in module mmselfsup.utils),
149

T

ToTensor (class in mmselfsup.datasets.pipelines), 139
TransformerFinetuneConstructor (class in

mmselfsup.core.optimizer), 132

Index

157

	安装教程
	依赖包
	配置环境
	安装 MMSelfSup
	从零开始安装脚本
	另一种选择: 使用 Docker
	安装校验
	使用不同版本的 MMSelfSup

	基础教程
	训练已有的算法
	使用 CPU 训练
	使用 单张/多张 显卡训练
	使用多台机器训练
	在一台机器上启动多个任务

	基准测试
	工具和建议
	统计模型的参数
	发布模型
	使用 t-SNE 来做模型可视化
	可复现性

	教程 0: 学习配置
	配置文件与检查点命名约定
	算法信息
	模块信息
	训练信息
	数据信息
	配置文件命名示例
	检查点命名约定

	配置文件结构
	继承和修改配置文件
	使用配置中的中间变量
	忽略基础配置中的字段
	使用基础配置中的字段

	通过脚本参数修改配置
	导入用户定义模块

	教程 1: 添加新的数据格式
	自定义数据格式示例
	创建 DataSource 子类
	创建 Dataset 子类
	修改配置文件

	教程 2：自定义数据管道
	Pipeline 概览
	在 Pipeline 中创建新的数据增强

	教程 3：添加新的模块
	添加新的 backbone
	添加新的 Necks
	添加新的损失
	合并所有改动

	教程 4：自定义优化策略
	构造 PyTorch 内置优化器
	定制学习率调整策略
	定制学习率衰减曲线
	定制学习率预热策略
	定制动量调整策略
	参数化精细配置

	梯度裁剪与梯度累计
	梯度裁剪
	梯度累计

	用户自定义优化方法

	教程 5：自定义模型运行参数
	定制工作流
	钩子
	默认训练钩子
	权重文件钩子 CheckpointHook
	日志钩子 LoggerHooks
	验证钩子 EvalHook

	使用其他内置钩子
	自定义钩子
	1. 创建一个新钩子
	2. 导入新钩子
	3. 修改配置

	教程 6：运行基准评测
	分类
	VOC SVM / Low-shot SVM
	线性评估
	ImageNet半监督分类
	ImageNet最邻近分类

	检测

	BYOL
	Bootstrap your own latent: A new approach to self-supervised Learning
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	Classification
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	DeepCluster
	Deep Clustering for Unsupervised Learning of Visual Features
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	DenseCL
	Dense Contrastive Learning for Self-Supervised Visual Pre-Training
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	MoCo v1 / v2
	Momentum Contrast for Unsupervised Visual Representation Learning (MoCo v1)
	Citation
	Improved Baselines with Momentum Contrastive Learning (MoCo v2)
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	NPID
	Unsupervised Feature Learning via Non-Parametric Instance Discrimination
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	ODC
	Online Deep Clustering for Unsupervised Representation Learning
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	Relative Location
	Unsupervised Visual Representation Learning by Context Prediction
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	Rotation Prediction
	Unsupervised Representation Learning by Predicting Image Rotation
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	SimCLR
	A Simple Framework for Contrastive Learning of Visual Representations
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	SimSiam
	Exploring Simple Siamese Representation Learning
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	SwAV
	Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
	Citation
	Models and Benchmarks
	VOC SVM / Low-shot SVM
	ImageNet Linear Evaluation
	iNaturalist2018 Linear Evaluation
	Places205 Linear Evaluation
	Semi-Supervised Classification

	Detection
	Pascal VOC 2007 + 2012
	COCO2017

	Segmentation
	Pascal VOC 2012 + Aug
	Cityscapes

	MoCo v3
	Abstract
	Results and Models
	Classification
	ImageNet Linear Evaluation

	Citation

	MAE
	Abstract
	Models and Benchmarks
	Citation

	SimMIM
	Abstract
	Models and Benchmarks
	Citation

	BarlowTwins
	Abstract
	Results and Models
	Classification
	ImageNet Linear Evaluation
	ImageNet Nearest-Neighbor Classification

	Citation

	CAE
	Abstract
	Prerequisite
	Models and Benchmarks
	Citation

	参与贡献 OpenMMLab
	工作流程
	代码风格
	Python
	C++ 和 CUDA

	更新日志
	MMSelfSup
	v0.9.0 (29/04/2022)
	亮点
	新特性
	Bug 修复
	改进
	文档

	v0.8.0 (31/03/2022)
	亮点
	新特性
	Bug 修复
	改进
	文档

	v0.7.0 (03/03/2022)
	亮点
	新特性
	Bug 修复
	改进
	文档

	v0.6.0 (02/02/2022)
	亮点
	新特性
	Bug 修复
	改进
	文档

	v0.5.0 (16/12/2021)
	亮点
	重构
	新特性
	基准
	文档

	OpenSelfSup (历史)
	v0.3.0 (14/10/2020)
	亮点
	Bug 修复
	新特性

	v0.2.0 (26/6/2020)
	亮点
	Bug 修复
	新特性

	English
	简体中文
	mmselfsup.apis
	mmselfsup.core
	hooks
	optimizer

	mmselfsup.datasets
	data_sources
	pipelines
	samplers
	datasets

	mmselfsup.models
	algorithms
	backbones
	heads
	memories
	necks
	utils

	mmselfsup.utils
	Indices and tables
	Python Module Index
	Index

