Shortcuts

Source code for mmselfsup.datasets.samplers.distributed_sampler

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmcv.runner import get_dist_info
from torch.utils.data import DistributedSampler as _DistributedSampler
from torch.utils.data import Sampler

from mmselfsup.utils import sync_random_seed


[docs]class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, replace=False, seed=0): super().__init__(dataset, num_replicas=num_replicas, rank=rank) self.shuffle = shuffle self.replace = replace self.unif_sampling_flag = False # In distributed sampling, different ranks should sample # non-overlapped data in the dataset. Therefore, this function # is used to make sure that each rank shuffles the data indices # in the same order based on the same seed. Then different ranks # could use different indices to select non-overlapped data from the # same data list. self.seed = sync_random_seed(seed) def __iter__(self): # deterministically shuffle based on epoch if not self.unif_sampling_flag: self.generate_new_list() else: self.unif_sampling_flag = False return iter(self.indices[self.rank * self.num_samples:(self.rank + 1) * self.num_samples]) def generate_new_list(self): if self.shuffle: g = torch.Generator() # When :attr:`shuffle=True`, this ensures all replicas # use a different random ordering for each epoch. # Otherwise, the next iteration of this sampler will # yield the same ordering. g.manual_seed(self.epoch + self.seed) if self.replace: indices = torch.randint( low=0, high=len(self.dataset), size=(len(self.dataset), ), generator=g).tolist() else: indices = torch.randperm( len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size self.indices = indices def set_uniform_indices(self, labels, num_classes): self.unif_sampling_flag = True assert self.shuffle,\ 'Using uniform sampling, the indices must be shuffled.' np.random.seed(self.epoch) assert (len(labels) == len(self.dataset)) N = len(labels) size_per_label = int(N / num_classes) + 1 indices = [] images_lists = [[] for i in range(num_classes)] for i, l in enumerate(labels): images_lists[l].append(i) for i, l in enumerate(images_lists): if len(l) == 0: continue indices.extend( np.random.choice( l, size_per_label, replace=(len(l) <= size_per_label))) indices = np.array(indices) np.random.shuffle(indices) indices = indices[:N].astype(np.int).tolist() # add extra samples to make it evenly divisible assert len(indices) <= self.total_size, \ f'{len(indices)} vs {self.total_size}' indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size, \ f'{len(indices)} vs {self.total_size}' self.indices = indices
[docs]class DistributedGivenIterationSampler(Sampler): def __init__(self, dataset, total_iter, batch_size, num_replicas=None, rank=None, last_iter=-1): rank, world_size = get_dist_info() assert rank < world_size self.dataset = dataset self.total_iter = total_iter self.batch_size = batch_size self.world_size = world_size self.rank = rank self.last_iter = last_iter self.total_size = self.total_iter * self.batch_size self.indices = self.gen_new_list() def __iter__(self): return iter(self.indices[(self.last_iter + 1) * self.batch_size:]) def set_uniform_indices(self, labels, num_classes): np.random.seed(0) assert (len(labels) == len(self.dataset)) N = len(labels) size_per_label = int(N / num_classes) + 1 indices = [] images_lists = [[] for i in range(num_classes)] for i, l in enumerate(labels): images_lists[l].append(i) for i, l in enumerate(images_lists): if len(l) == 0: continue indices.extend( np.random.choice( l, size_per_label, replace=(len(l) <= size_per_label))) indices = np.array(indices) np.random.shuffle(indices) indices = indices[:N].astype(np.int) # repeat all_size = self.total_size * self.world_size indices = indices[:all_size] num_repeat = (all_size - 1) // indices.shape[0] + 1 indices = np.tile(indices, num_repeat) indices = indices[:all_size] np.random.shuffle(indices) # slice beg = self.total_size * self.rank indices = indices[beg:beg + self.total_size] assert len(indices) == self.total_size # set self.indices = indices
[docs] def gen_new_list(self): """Each process shuffle all list with same seed, and pick one piece according to rank.""" np.random.seed(0) all_size = self.total_size * self.world_size indices = np.arange(len(self.dataset)) indices = indices[:all_size] num_repeat = (all_size - 1) // indices.shape[0] + 1 indices = np.tile(indices, num_repeat) indices = indices[:all_size] np.random.shuffle(indices) beg = self.total_size * self.rank indices = indices[beg:beg + self.total_size] assert len(indices) == self.total_size return indices
def __len__(self): """Note here we do not take last iter into consideration, since __len__ should only be used for displaying, the correct remaining size is handled by dataloader.""" # return self.total_size - (self.last_iter+1)*self.batch_size return self.total_size def set_epoch(self, epoch): pass
Read the Docs v: latest
Versions
latest
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.